I have two end-point arrays that look like this:
t1 = np.array([0,13,22,...,99994])
t2 = np.array([4,14,25,...,99998])
I am looking for the most efficient way to generate an output that looks like this:
np.array([0,1,2,3,4,13,14,22,23,24,25,...,99994,99995,99996,99997,99998])
one way to do it is this:
np.array([i for a, b in zip(t1, t2) for i in range(a, b + 1)])
This solution is slow and I am certain that it can still be vastly improved by entirely replacing the zip and list comprehension combo with some functions entirely in Numpy, it is just that I don't know how. Can you guys show me the most efficient way to do it?
Thank you guys in advance
Code to generate these two arrays:
import numpy as np
m =10000
Z = np.arange(0,10*m,10)
t1 = np.random.randint(5, size =m ) + Z
t2 =np.random.randint(5,size = m) + 5 + Z
Here's a performant approach using numba
:
from numba import njit
@njit
def n_ranges_nb(t1, t2):
a = np.arange(np.max(t2)+1)
n = (t2 - t1).sum()
out = np.zeros(n)
l, l_old = 0, 0
for i,j in zip(t1, t2):
l += j-i
out[l_old:l] = a[i:j]
l_old = l
return out
Checking with the same values as above:
t1 = np.array([0,13,22])
t2 = np.array([4,14,25])
n_ranges_nb(t1, t2+1)
# array([ 0., 1., 2., 3., 4., 13., 14., 22., 23., 24., 25.])
Lets check the timings:
d = 100
perfplot.show(
setup=lambda n: np.cumsum(np.random.randint(0, 50, n)),
kernels=[
lambda x: np.array([i for a, b in zip(x,x+d) for i in range(a,b+1)]),
lambda x: n_ranges_nb(x, x+d+1),
lambda x: create_ranges(x, x+d+1) # (from the dupe)
],
labels=['nested-list-comp', 'n_ranges_nb', 'create_ranges'],
n_range=[2**k for k in range(0, 18)],
xlabel='N'
)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With