My code is:
import gluoncv as gcv
net = gcv.model_zoo.get_model('ssd_512_mobilenet1.0_voc', pretrained=True)
windowName = "ssdObject"
cv2.namedWindow(windowName, cv2.WINDOW_NORMAL)
cv2.resizeWindow(windowName, 1280, 720)
cv2.moveWindow(windowName, 0, 0)
cv2.setWindowTitle(windowName, "SSD Object Detection")
while True:
# Check to see if the user closed the window
if cv2.getWindowProperty(windowName, 0) < 0:
# This will fail if the user closed the window; Nasties get printed to the console
break
ret_val, frame = video_capture.read()
frame = mx.nd.array(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)).astype('uint8')
rgb_nd, frame = gcv.data.transforms.presets.ssd.transform_test(frame, short=512, max_size=700)
# # Run frame through network
class_IDs, scores, bounding_boxes = net(rgb_nd)
displayBuf = frame
cv2.imshow(windowName, displayBuf)
cv2.waitKey(0)
I somehow need to draw the bounding_codes
, class_IDs
, and scores
onto the image and output it via imshow
.
How can I accomplish this?
We can use ssd|yolo
(wroted by mxnet|keras|pytorch
) to detect the objects in the image. Then we will get the result as a form of classids/scores/bboxes. Iterator the result, do some transform, then just drawing in OpenCV will be OK.
(Poor English, but I think you can get me in the following code).
This is the source image:
This the result displayed in OpenCV:
#!/usr/bin/python3
# 2019/01/24 09:05
# 2019/01/24 10:25
import gluoncv as gcv
import mxnet as mx
import cv2
import numpy as np
# https://github.com/pjreddie/darknet/blob/master/data/dog.jpg
## (1) Create network
net = gcv.model_zoo.get_model('ssd_512_mobilenet1.0_voc', pretrained=True)
## (2) Read the image and preprocess
img = cv2.imread("dog.jpg")
rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
xrgb = mx.nd.array(rgb).astype('uint8')
rgb_nd, xrgb = gcv.data.transforms.presets.ssd.transform_test(xrgb, short=512, max_size=700)
## (3) Interface
class_IDs, scores, bounding_boxes = net(rgb_nd)
## (4) Display
for i in range(len(scores[0])):
#print(class_IDs.reshape(-1))
#print(scores.reshape(-1))
cid = int(class_IDs[0][i].asnumpy())
cname = net.classes[cid]
score = float(scores[0][i].asnumpy())
if score < 0.5:
break
x,y,w,h = bbox = bounding_boxes[0][i].astype(int).asnumpy()
print(cid, score, bbox)
tag = "{}; {:.4f}".format(cname, score)
cv2.rectangle(img, (x,y), (w, h), (0, 255, 0), 2)
cv2.putText(img, tag, (x, y-20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,255), 1)
cv2.imshow("ssd", img);
cv2.waitKey()
GluonCV recently has included the visualization function with OpenCV.
To call these functions, you just add a cv_
prefix to your already using function. For example using cv_plot_bbox
instead of plot_bbox
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With