I am new in caffe framework and I would like to use caffe to implement the training with multi-label. I use two LMDB to save data and labels, respectively. The data LMDB is of dimension Nx1xHxW while the label LMDB is of dimension Nx1x1x3. Labels are float data.
The text file is as follow:
5911 3
train/train_data/4224.bmp 13 0 12
train/train_data/3625.bmp 11 3 7
... ...
I use C++ to create LMDB. My main.cpp:
#include <algorithm>
#include <fstream> // NOLINT(readability/streams)
#include <string>
#include <utility>
#include <vector>
#include <QImage>
#include "boost/scoped_ptr.hpp"
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/db.hpp"
#include "caffe/util/format.hpp"
#include "caffe/util/rng.hpp"
#include <boost/filesystem.hpp>
#include <iomanip>
#include <iostream> // NOLINT(readability/streams)
#include <string>
#include "google/protobuf/message.h"
#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/format.hpp"
#ifndef CAFFE_TMP_DIR_RETRIES
#define CAFFE_TMP_DIR_RETRIES 100
#endif
using namespace caffe; // NOLINT(build/namespaces)
using std::pair;
using boost::scoped_ptr;
const char *dat_lab="/home/mul/caffe-master/examples/2D_3D/new/info/train.data";
string data_db="/home/mul/caffe-master/examples/2D_3D/new/2D_3D_data_leveldb";
string label_db="/home/mul/caffe-master/examples/2D_3D/new/2D_3D_label_leveldb";
string root="/home/mul/caffe-master/examples/2D_3D/new/";
string path;
int main()
{
//Create data DB
scoped_ptr<db::DB> dat_db(db::GetDB("leveldb"));
dat_db->Open(data_db, db::NEW);
scoped_ptr<db::Transaction> dat_txn(dat_db->NewTransaction());
//Create label DB
scoped_ptr<db::DB> lab_db(db::GetDB("leveldb"));
lab_db->Open(label_db, db::NEW);
scoped_ptr<db::Transaction> lab_txn(lab_db->NewTransaction());
//Storing to db
Datum dat_datum,lab_datum;
int count=0;
std::ifstream infile(dat_lab);
std::string filename;
const char *dataname;
int dataNum;
int labelcount;
QImage img;
infile>>dataNum>>labelcount;
LOG(INFO) << "A total of " << dataNum<< " images.";
for (int line_id = 0; line_id < dataNum; ++line_id)
{
infile>>filename;
path=root+filename;
dataname=path.c_str();
img.load(dataname);
dat_datum.set_channels(1);
dat_datum.set_height(img.height());
dat_datum.set_width(img.width());
dat_datum.clear_data();
dat_datum.clear_float_data();
int datum_channels = dat_datum.channels();
int datum_height = dat_datum.height();
int datum_width = dat_datum.width();
int datum_size = datum_channels * datum_height * datum_width;
std::string buffer(datum_size, ' ');
const uchar* ptr = img.bits();
int img_index = 0;
for (int h = 0; h < datum_height; ++h)
{
for (int w = 0; w < datum_width; ++w)
{
for (int c = 0; c < datum_channels; ++c)
{
int datum_index = (c * datum_height + h) * datum_width + w;
buffer[datum_index] = static_cast<char>(ptr[img_index++]);
}
}
}
dat_datum.set_data(buffer);
lab_datum.set_channels(labelcount);
lab_datum.set_height(1);
lab_datum.set_width(1);
lab_datum.clear_data();
lab_datum.clear_float_data();
for(int i=0;i<labelcount;++i)
{
float mid;
infile>>mid;
lab_datum.add_float_data(mid);
}
// sequential
string key_str = caffe::format_int(line_id, 8);
// Put in db
string out;
CHECK(dat_datum.SerializeToString(&out));
dat_txn->Put(key_str, out);
CHECK(lab_datum.SerializeToString(&out));
lab_txn->Put(key_str, out);
if (++count % 1000 == 0)
{
// Commit db
dat_txn->Commit();
dat_txn.reset(dat_db->NewTransaction());
lab_txn->Commit();
lab_txn.reset(lab_db->NewTransaction());
LOG(INFO) << "Processed " << count << " files.";
}
}
// write the last batch
if (count % 1000 != 0)
{
dat_txn->Commit();
lab_txn->Commit();
LOG(INFO) << "Processed " << count << " files.";
}
return 0;
}
Two LMDB can be created successfully. But when I use caffe to implement the training with two LMDB, the result is always wrong. The loss layer is EUCLIDEAN_LOSS and the loss can not descent. I don't know whether the code which can create two LMDB is wrong. Who can help me ? Thanks whatever.
As a whole, your code above is Ok but you should notice that:
At last, I added a "MultiTaskData" layer MultiTaskDataLayer to read multi-labels from datum for multi-task training and you can make simple modifications to add it to your caffe and use like this:
name: "AgeNet"
layer {
name: "Age"
type: "MultiTaskData"
top: "data"
top: "age_label"
top: "gender_label"
data_param {
source: "age_gender_classification_0_60p_train_leveldb"
batch_size: 60
task_num: 2
label_dimension: 1
label_dimension: 1
}
transform_param {
scale: 0.00390625
crop_size: 60
mirror: true
}
include:{ phase: TRAIN }
}
layer {
name: "cls_age"
type: "InnerProduct"
bottom: "data"
top: "cls_age"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 7
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "age_loss"
type: "SoftmaxWithLoss"
bottom: "cls_age"
bottom: "age_label"
top: "age_loss"
include:{ phase: TRAIN }
}
layer {
name: "cls_gender"
type: "InnerProduct"
bottom: "data"
top: "cls_gender"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "gender_loss"
type: "SoftmaxWithLoss"
bottom: "cls_gender"
bottom: "gender_label"
top: "gender_loss"
include:{ phase: TRAIN }
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With