Recently, I learned Mo's algorithm for the square-root decomposition of queries in order to speed up solutions to certain problems.
In order to practice implementation, I have been trying to solve D. Powerful array (a past contest problem on Codeforces) using this idea. The problem is as follows:
You have an array with 
 integers 
.
Consider an arbitrary subarray 
. Define 
 to be the number of occurrences of an integer 
 in this subarray. The power of a subarray is defined as the sum of 
 for all integers 
 (note that there are only a positive number of terms for which this is not zero).
Answer 
 queries. In each query, given two integers 
 and 
, compute the power of 
.
It holds:



Using Mo's algorithm, I have written code that solves this problem offline in 
. I am certain that this problem can be solved using this algorithm and time complexity, as I have inspected the accepted code of others and they also use a similar algorithm.
My code, however, gets a time limit exceeded verdict.
Below is the code I have written:
#include <ios>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
#include <utility>
#include <map>
int sqt;
long long int ans = 0;
long long int arr[200005] = {};
long long int cnt[1000005] = {};
long long int tans[200005] = {};
struct el
{
    int l, r, in;
};
bool cmp(const el &x, const el &y)
{
    if (x.l/sqt != y.l/sqt)
        return x.l/sqt < y.l/sqt;
    return x.r < y.r;
}
el qr[200005];
int main()
{
    std::ios_base::sync_with_stdio(false);
    std::cin.tie(NULL);
    std::cout.tie(NULL);
    int n, q, a, b;
    std::cin >> n >> q;
    sqt = sqrt((double)(n))+27;
    for (int i = 0; i < n; i++)
        std::cin >> arr[i];
    for (int i = 0; i < q; i++)
    {
        std::cin >> a >> b;
        a--; b--;
        qr[i].l = a;
        qr[i].r = b;
        qr[i].in = i;
    }
    std::sort(qr, qr+q, cmp);
    int li = 0; //left iterator
    int ri = 0; //right iterator
    ans = arr[0];
    cnt[arr[0]]++;
    for (int i = 0; i < q; i++)
    {
        while (li < qr[i].l)
        {
            ans -= cnt[arr[li]]*cnt[arr[li]]*arr[li];
            cnt[arr[li]]--;
            ans += cnt[arr[li]]*cnt[arr[li]]*arr[li];
            li++;
        }
        while (li > qr[i].l)
        {
            li--;
            ans -= cnt[arr[li]]*cnt[arr[li]]*arr[li];
            cnt[arr[li]]++;
            ans += cnt[arr[li]]*cnt[arr[li]]*arr[li];
        }
        while (ri < qr[i].r)
        {
            ri++;
            ans -= cnt[arr[ri]]*cnt[arr[ri]]*arr[ri];
            cnt[arr[ri]]++;
            ans += cnt[arr[ri]]*cnt[arr[ri]]*arr[ri];
        }
        while (ri > qr[i].r)
        {
            ans -= cnt[arr[ri]]*cnt[arr[ri]]*arr[ri];
            cnt[arr[ri]]--;
            ans += cnt[arr[ri]]*cnt[arr[ri]]*arr[ri];
            ri--;
        }
        tans[qr[i].in] = ans;
    }
    for (int i = 0; i < q; i++)
        std::cout << tans[i] << '\n';
}
Can you suggest any non-asymptotic (or possibly even an asymptotic) improvement that can speed up the program enough to pass the time limit?
I have already tried the following things, to no avail:
sqt (such as 
 in the code above).el itself.I feel like I'm missing something important, since the other codes I have inspected seem to pass the time limit with quite a bit of leeway (around half a second). Yet, they seem to be using the same algorithm as my code.
Any help would be highly appreciated!
You could strength-reduce
    while (li < qr[i].l)
    {
        ans -= cnt[arr[li]]*cnt[arr[li]]*arr[li];
        cnt[arr[li]]--;
        ans += cnt[arr[li]]*cnt[arr[li]]*arr[li];
        li++;
    }
to
    while (li < qr[i].l)
    {
        ans -= (2*cnt[arr[li]]-1)*arr[li];
        cnt[arr[li]]--;
        li++;
    }
and likewise for the others.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With