Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Most dominant color in RGB image - OpenCV / NumPy / Python

I have a python image processing function, that uses tries to get the dominant color of an image. I make use of a function I found here https://github.com/tarikd/python-kmeans-dominant-colors/blob/master/utils.py

It works, but unfortunately I don't quite understand what it does and I learned that np.histogram is rather slow and I should use cv2.calcHist since it's 40x faster according to this: https://docs.opencv.org/trunk/d1/db7/tutorial_py_histogram_begins.html

I'd like to understand how I have to update the code to use cv2.calcHist, or better, which values I have to input.

My function

def centroid_histogram(clt):
    # grab the number of different clusters and create a histogram
    # based on the number of pixels assigned to each cluster
    num_labels = np.arange(0, len(np.unique(clt.labels_)) + 1)
    (hist, _) = np.histogram(clt.labels_, bins=num_labels)

    # normalize the histogram, such that it sums to one
    hist = hist.astype("float")
    hist /= hist.sum()

    # return the histogram
    return hist

The pprint of clt is this, not sure if this helps

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
    n_clusters=1, n_init=10, n_jobs=1, precompute_distances='auto',
    random_state=None, tol=0.0001, verbose=0)

My code can be found here: https://github.com/primus852/python-movie-barcode

I am a very beginner, so any help is highly appreciated.

As per request:

Sample Image

Sample

Most dominant color:

rgb(22,28,37)

Computation time for the Histogram:

0.021515369415283203s

like image 773
PrimuS Avatar asked Jun 17 '18 19:06

PrimuS


People also ask

What is the dominant value in RGB color space?

For instance red is the dominant color of RGB(65, 0, 0).

What I color is the most dominant?

The allele genes come in the form of brown, blue, or green, with brown being dominant, followed by green, and blue being the least dominant or what is called recessive.


1 Answers

Two approaches using np.unique and np.bincount to get the most dominant color could be suggested. Also, in the linked page, it talks about bincount as a faster alternative, so that could be the way to go.

Approach #1

def unique_count_app(a):
    colors, count = np.unique(a.reshape(-1,a.shape[-1]), axis=0, return_counts=True)
    return colors[count.argmax()]

Approach #2

def bincount_app(a):
    a2D = a.reshape(-1,a.shape[-1])
    col_range = (256, 256, 256) # generically : a2D.max(0)+1
    a1D = np.ravel_multi_index(a2D.T, col_range)
    return np.unravel_index(np.bincount(a1D).argmax(), col_range)

Verification and timings on 1000 x 1000 color image in a dense range [0,9) for reproducible results -

In [28]: np.random.seed(0)
    ...: a = np.random.randint(0,9,(1000,1000,3))
    ...: 
    ...: print unique_count_app(a)
    ...: print bincount_app(a)
[4 7 2]
(4, 7, 2)

In [29]: %timeit unique_count_app(a)
1 loop, best of 3: 820 ms per loop

In [30]: %timeit bincount_app(a)
100 loops, best of 3: 11.7 ms per loop

Further boost

Further boost upon leveraging multi-core with numexpr module for large data -

import numexpr as ne

def bincount_numexpr_app(a):
    a2D = a.reshape(-1,a.shape[-1])
    col_range = (256, 256, 256) # generically : a2D.max(0)+1
    eval_params = {'a0':a2D[:,0],'a1':a2D[:,1],'a2':a2D[:,2],
                   's0':col_range[0],'s1':col_range[1]}
    a1D = ne.evaluate('a0*s0*s1+a1*s0+a2',eval_params)
    return np.unravel_index(np.bincount(a1D).argmax(), col_range)

Timings -

In [90]: np.random.seed(0)
    ...: a = np.random.randint(0,9,(1000,1000,3))

In [91]: %timeit unique_count_app(a)
    ...: %timeit bincount_app(a)
    ...: %timeit bincount_numexpr_app(a)
1 loop, best of 3: 843 ms per loop
100 loops, best of 3: 12 ms per loop
100 loops, best of 3: 8.94 ms per loop
like image 65
Divakar Avatar answered Oct 27 '22 14:10

Divakar