Since MongoDB recently introduced graphLookup, I was trying to find if that can hold a simple social relationship graph. I currently use neo4j just for this purpose.
I understand graphLookup as a recursive search, it just go deeper thru the 'connectFromField' of each document.
Though I am able to do the basic stuff, I want to give more properties for each relation. For instance, the first example here:(employees and reporting hierarchy)
https://docs.mongodb.com/manual/reference/operator/aggregation/graphLookup/
{ "_id" : 2, "name" : "Eliot", "reportsTo" : "Dev" }
If I need to add a start date to the 'reportsTo' value, something like this:
{ "_id" : 2, "name" : "Eliot", "reportsTo" : {"name": "Dev", "from": "date" } }
I am afraid this is not supported.
I would like to know if someone has used the MongoDB this way.
Say we've got the following documents inserted:
> db.employees.insertMany([
... { "_id" : 1, "name" : "Dev" },
... { "_id" : 2, "name" : "Eliot", "reportsTo" : { name: "Dev", "from": ISODate("2016-01-01T00:00:00.000Z") } },
... { "_id" : 3, "name" : "Ron", "reportsTo" : { name: "Eliot", "from": ISODate("2016-01-01T00:00:00.000Z") } },
... { "_id" : 4, "name" : "Andrew", "reportsTo" : { name: "Eliot", "from": ISODate("2016-01-01T00:00:00.000Z") } },
... { "_id" : 5, "name" : "Asya", "reportsTo" : { name: "Ron", "from": ISODate("2016-01-01T00:00:00.000Z") } },
... { "_id" : 6, "name" : "Dan", "reportsTo" : { name: "Andrew", "from": ISODate("2016-01-01T00:00:00.000Z") } },
... ]);
{ "acknowledged" : true, "insertedIds" : [ 1, 2, 3, 4, 5, 6 ] }
We then can just use the .
to get a field from an embedded document using the following aggregation query:
db.employees.aggregate([
{
$graphLookup: {
from: "employees",
startWith: "Eliot",
connectFromField: "reportsTo.name",
connectToField: "name",
as: "reportingHierarchy"
}
}
])
Which will then return us the following result:
{
"_id" : 1,
"name" : "Dev",
"reportingHierarchy" : [
{
"_id" : 1,
"name" : "Dev"
},
{
"_id" : 2,
"name" : "Eliot",
"reportsTo" : {
"name" : "Dev",
"from" : ISODate("2016-01-01T00:00:00Z")
}
}
]
}
{
"_id" : 2,
"name" : "Eliot",
"reportsTo" : {
"name" : "Dev",
"from" : ISODate("2016-01-01T00:00:00Z")
},
"reportingHierarchy" : [
{
"_id" : 1,
"name" : "Dev"
},
{
"_id" : 2,
"name" : "Eliot",
"reportsTo" : {
"name" : "Dev",
"from" : ISODate("2016-01-01T00:00:00Z")
}
}
]
}
{
"_id" : 3,
"name" : "Ron",
"reportsTo" : {
"name" : "Eliot",
"from" : ISODate("2016-01-01T00:00:00Z")
},
"reportingHierarchy" : [
{
"_id" : 1,
"name" : "Dev"
},
{
"_id" : 2,
"name" : "Eliot",
"reportsTo" : {
"name" : "Dev",
"from" : ISODate("2016-01-01T00:00:00Z")
}
}
]
}
{
"_id" : 4,
"name" : "Andrew",
"reportsTo" : {
"name" : "Eliot",
"from" : ISODate("2016-01-01T00:00:00Z")
},
"reportingHierarchy" : [
{
"_id" : 1,
"name" : "Dev"
},
{
"_id" : 2,
"name" : "Eliot",
"reportsTo" : {
"name" : "Dev",
"from" : ISODate("2016-01-01T00:00:00Z")
}
}
]
}
{
"_id" : 5,
"name" : "Asya",
"reportsTo" : {
"name" : "Ron",
"from" : ISODate("2016-01-01T00:00:00Z")
},
"reportingHierarchy" : [
{
"_id" : 1,
"name" : "Dev"
},
{
"_id" : 2,
"name" : "Eliot",
"reportsTo" : {
"name" : "Dev",
"from" : ISODate("2016-01-01T00:00:00Z")
}
}
]
}
{
"_id" : 6,
"name" : "Dan",
"reportsTo" : {
"name" : "Andrew",
"from" : ISODate("2016-01-01T00:00:00Z")
},
"reportingHierarchy" : [
{
"_id" : 1,
"name" : "Dev"
},
{
"_id" : 2,
"name" : "Eliot",
"reportsTo" : {
"name" : "Dev",
"from" : ISODate("2016-01-01T00:00:00Z")
}
}
]
}
We can then also use the rest of the aggregation pipeline to do any other manipulations:
db.employees.aggregate([
{ $match: { "reportsTo.from": { $gt: ISODate("2016-01-01T00:00:00Z") } } },
{ $graphLookup: { ... } },
{ $project: { ... }
]);
See https://docs.mongodb.com/v3.2/reference/operator/aggregation-pipeline/ for pipeline stages.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With