Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Modifying Levenshtein Distance algorithm to not calculate all distances

I'm working on a fuzzy search implementation and as part of the implementation, we're using Apache's StringUtils.getLevenshteinDistance. At the moment, we're going for a specific maxmimum average response time for our fuzzy search. After various enhancements and with some profiling, the place where the most time is spent is calculating the Levenshtein distance. It takes up roughly 80-90% of the total time on search strings three letters or more.

Now, I know there are some limitations to what can be done here, but I've read on previous SO questions and on the Wikipedia link for LD that if one is willing limit the threshold to a set maximum distance, that could help curb the time spent on the algorithm, but I'm not sure how to do this exactly.

If we are only interested in the distance if it is smaller than a threshold k, then it suffices to compute a diagonal stripe of width 2k+1 in the matrix. In this way, the algorithm can be run in O(kl) time, where l is the length of the shortest string.[3]

Below you will see the original LH code from StringUtils. After that is my modification. I'm trying to basically calculate the distances of a set length from the i,j diagonal (so, in my example, two diagonals above and below the i,j diagonal). However, this can't be correct as I've done it. For example, on the highest diagonal, it's always going to choose the cell value directly above, which will be 0. If anyone could show me how to make this functional as I've described, or some general advice on how to make it so, it would be greatly appreciated.

public static int getLevenshteinDistance(String s, String t) {
        if (s == null || t == null) {
            throw new IllegalArgumentException("Strings must not be null");
        }

        int n = s.length(); // length of s
        int m = t.length(); // length of t

        if (n == 0) {
            return m;
        } else if (m == 0) {
            return n;
        }

        if (n > m) {
            // swap the input strings to consume less memory
            String tmp = s;
            s = t;
            t = tmp;
            n = m;
            m = t.length();
        }

        int p[] = new int[n+1]; //'previous' cost array, horizontally
        int d[] = new int[n+1]; // cost array, horizontally
        int _d[]; //placeholder to assist in swapping p and d

        // indexes into strings s and t
        int i; // iterates through s
        int j; // iterates through t

        char t_j; // jth character of t

        int cost; // cost

        for (i = 0; i<=n; i++) {
            p[i] = i;
        }

        for (j = 1; j<=m; j++) {
            t_j = t.charAt(j-1);
            d[0] = j;

            for (i=1; i<=n; i++) {
                cost = s.charAt(i-1)==t_j ? 0 : 1;
                // minimum of cell to the left+1, to the top+1, diagonally left and up +cost
                d[i] = Math.min(Math.min(d[i-1]+1, p[i]+1),  p[i-1]+cost);
            }

            // copy current distance counts to 'previous row' distance counts
            _d = p;
            p = d;
            d = _d;
        }

        // our last action in the above loop was to switch d and p, so p now 
        // actually has the most recent cost counts
        return p[n];
    }

My modifications (only to the for loops):

  for (j = 1; j<=m; j++) {
        t_j = t.charAt(j-1);
        d[0] = j;

        int k = Math.max(j-2, 1);
        for (i = k; i <= Math.min(j+2, n); i++) {
            cost = s.charAt(i-1)==t_j ? 0 : 1;
            // minimum of cell to the left+1, to the top+1, diagonally left and up +cost
            d[i] = Math.min(Math.min(d[i-1]+1, p[i]+1),  p[i-1]+cost);
        }

        // copy current distance counts to 'previous row' distance counts
        _d = p;
        p = d;
        d = _d;
    }
like image 363
AHungerArtist Avatar asked Oct 05 '10 17:10

AHungerArtist


Video Answer


1 Answers

The issue with implementing the window is dealing with the value to the left of the first entry and above the last entry in each row.

One way is to start the values you initially fill in at 1 instead of 0, then just ignore any 0s that you encounter. You'll have to subtract 1 from your final answer.

Another way is to fill the entries left of first and above last with high values so the minimum check will never pick them. That's the way I chose when I had to implement it the other day:

public static int levenshtein(String s, String t, int threshold) {
    int slen = s.length();
    int tlen = t.length();

    // swap so the smaller string is t; this reduces the memory usage
    // of our buffers
    if(tlen > slen) {
        String stmp = s;
        s = t;
        t = stmp;
        int itmp = slen;
        slen = tlen;
        tlen = itmp;
    }

    // p is the previous and d is the current distance array; dtmp is used in swaps
    int[] p = new int[tlen + 1];
    int[] d = new int[tlen + 1];
    int[] dtmp;

    // the values necessary for our threshold are written; the ones after
    // must be filled with large integers since the tailing member of the threshold 
    // window in the bottom array will run min across them
    int n = 0;
    for(; n < Math.min(p.length, threshold + 1); ++n)
        p[n] = n;
    Arrays.fill(p, n, p.length, Integer.MAX_VALUE);
    Arrays.fill(d, Integer.MAX_VALUE);

    // this is the core of the Levenshtein edit distance algorithm
    // instead of actually building the matrix, two arrays are swapped back and forth
    // the threshold limits the amount of entries that need to be computed if we're 
    // looking for a match within a set distance
    for(int row = 1; row < s.length()+1; ++row) {
        char schar = s.charAt(row-1);
        d[0] = row;

        // set up our threshold window
        int min = Math.max(1, row - threshold);
        int max = Math.min(d.length, row + threshold + 1);

        // since we're reusing arrays, we need to be sure to wipe the value left of the
        // starting index; we don't have to worry about the value above the ending index
        // as the arrays were initially filled with large integers and we progress to the right
        if(min > 1)
            d[min-1] = Integer.MAX_VALUE;

        for(int col = min; col < max; ++col) {
            if(schar == t.charAt(col-1))
                d[col] = p[col-1];
            else 
                // min of: diagonal, left, up
                d[col] = Math.min(p[col-1], Math.min(d[col-1], p[col])) + 1;
        }
        // swap our arrays
        dtmp = p;
        p = d;
        d = dtmp;
    }

        if(p[tlen] == Integer.MAX_VALUE)
            return -1;
    return p[tlen];
}
like image 103
elindsey Avatar answered Sep 22 '22 07:09

elindsey