I was asked below question in an interview:
Every number can be described via the addition and subtraction of powers of 2. For example,
29 = 2^0 + 2^2 + 2^3 + 2^4
. Given an int n, return minimum number of additions and subtractions of 2^i to get n.
Example 1:
Input: 15
Output: 2
Explanation: 2^4 - 2^0 = 16 - 1 = 15
Example 2:
Input: 8
Output: 1
Example 3:
Input: 0
Output: 0
Below is what I got but is there any way to improve this or is there any better way to solve above problem?
public static int minPowerTwo(int n) {
if (n == 0) {
return 0;
}
if (Integer.bitCount(n) == 1) {
return 1;
}
String binary = Integer.toBinaryString(n);
StringBuilder sb = new StringBuilder();
sb.append(binary.charAt(0));
for (int i = 0; i < binary.length() - 1; i++) {
sb.append('0');
}
int min = Integer.parseInt(sb.toString(), 2);
sb.append('0');
int max = Integer.parseInt(sb.toString(), 2);
return 1 + Math.min(minPowerTwo(n - min), minPowerTwo(max - n));
}
Well... we can deduce that each power of two should be used only once, because otherwise you can get the same result a shorter way, since 2x + 2x = 2x+1, -2x - 2x = -2x+1, and 2x - 2x = 0.
Considering the powers used in order, each one has to change the corresponding bit from an incorrect value to the correct value, because there will be no further opportunities to fix that bit, since each power is used only once.
When you need to add or subtract, the difference is what happens to the higher bits:
000000 000000 111100 111100
+ 100 - 100 + 100 - 100
------ ------ ------ ------
000100 111100 000000 111000
One way, all the higher bits are flipped. The other way they are not.
Since each decision can independently determine the state of all the higher bits, the consequences of choosing between + or - are only relevant in determining the next power of 2.
When you have to choose + or -, one choice will correct 1 bit, but the other choice will correct 2 bits or more, meaning that the next bit that requires correction will be higher.
So, this problem has a very straightforward solution with no dynamic programming or searching or anything like that:
in java, that would look like this. Instead of finding the operations required to make the value, I'll find the operations required to change the value to zero, which is the same thing with opposite signs:
int minPowersToFix(int val) {
int result = 0;
while(val!=0) {
++result;
int firstbit = val&-val; //smallest bit that needs fixed
int pluscase = val+firstbit;
if ((pluscase & (firstbit<<1)) == 0) {
val+=firstbit;
} else {
val-=firstbit;
}
}
return result;
}
And, here is a test case to check whether a solution is correct, written in Java.
(It was written for my solution, which is proven not correct in some case, so I removed that answer, but the test case is still relevant.)
Matt Timmermans
's answer passes all the test cases, including negative numbers.
And, Integer.bitCount(val ^ (3 * val))
passes most of them, except when input is Integer.MAX_VALUE
.
MinCountOf2PowerTest.java
import org.testng.Assert;
import org.testng.annotations.Test;
public class MinCountOf2PowerTest {
@Test
public void testPositive() {
// no flip,
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("01010001", 2)), 3);
// flip,
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("011", 2)), 2);
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("0111", 2)), 2);
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("01111", 2)), 2);
Assert.assertEquals(MinCountOf2Power.minCount(Integer.MAX_VALUE), 2);
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("01101", 2)), 3);
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("011011", 2)), 3);
// flip, there are multiple flippable location,
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("0100000111", 2)), 3);
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("010010000000111", 2)), 4);
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("0100100000001111111", 2)), 4);
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("010011000000001111111", 2)), 5);
}
@Test
public void testZero() {
Assert.assertEquals(MinCountOf2Power.minCount(0), 0);
}
@Test
public void testNegative() {
Assert.assertEquals(MinCountOf2Power.minCount(-1), 1);
Assert.assertEquals(MinCountOf2Power.minCount(-9), 2);
Assert.assertEquals(MinCountOf2Power.minCount(-100), 3);
}
// a positive number has the same result as its negative number,
@Test
public void testPositiveVsNegative() {
for (int i = 1; i <= 1000; i++) {
Assert.assertEquals(MinCountOf2Power.minCount(i), MinCountOf2Power.minCount(-i));
}
Assert.assertEquals(MinCountOf2Power.minCount(Integer.MAX_VALUE), MinCountOf2Power.minCount(-Integer.MAX_VALUE));
}
// corner case - ending 0,
@Test
public void testCornerEnding0() {
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("01110", 2)), 2);
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("011110", 2)), 2);
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("011100", 2)), 2);
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("0111000", 2)), 2);
Assert.assertEquals(MinCountOf2Power.minCount(Integer.parseInt("01110000", 2)), 2);
}
// input from OP's question, refer: https://stackoverflow.com/questions/57797157
@Test
public void testOpInput() {
Assert.assertEquals(MinCountOf2Power.minCount(15), 2);
Assert.assertEquals(MinCountOf2Power.minCount(8), 1);
Assert.assertEquals(MinCountOf2Power.minCount(0), 0);
}
}
Tips:
Java
, and use TestNG
.
JUnit
instead simply by replacing the import statement, I guess.If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With