I have this homework:
Given an array consisting of
N
integers, you are required to print the minimum contiguous sum that can be obtained by performing at mostK
swaps. During a swap any 2 elements of the given array could be swapped.
I tried this
int currentSum = 0;
int currentMin = 0;
for (int j = 0; j < input.Length; j++)
{
if (input[j] >= 0)
continue;
currentSum += input[j];
if (currentMin > currentSum)
currentMin = currentSum;
}
It will give the minimum sum without any swappings, but how can I improve in no more than K
swaps?
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Collections;
import java.util.Iterator;
import java.util.PriorityQueue;
import java.util.Scanner;
import java.util.ArrayList;
import java.util.List;
class TestClass {
static Scanner scanner;
public static void main(String args[] ) throws Exception {
scanner=new Scanner(System.in);
int T=scanner.nextInt();
while(T>0){
int N=scanner.nextInt();
int K=scanner.nextInt();
int[] array=new int[N];
for(int i=0;i<array.length;i++)
{
array[i]=scanner.nextInt();
}
System.out.println(findingMinimumSumSubarray(array, K));
T--;
}
}
public static int findingMinimumSumSubarray(int[] values, int k) {
int N = values.length;
int res = values[0];
for (int L = 0; L < N; L++) {
for (int R = L; R < N; R++) {
List<Integer> A= new ArrayList<Integer>();
List<Integer> B = new ArrayList<Integer>();
int ashu = 0;
for (int i = 0; i < N; i++) {
if (i >= L && i <= R) {
A.add(values[i]);
ashu += values[i];
} else {
B.add(values[i]);
}
}
Collections.sort(A);
Collections.sort(B);
Collections.reverse(B);
res = Math.min(res, ashu);
for (int t = 1; t <= k; t++) {
if (t > A.size() || t > B.size()) break;
ashu -= A.get(A.size() - t);
ashu += B.get(B.size() - t);
res = Math.min(res, ashu);
}
}
}
return res;
}
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With