I've seen some questions about merging csv files into one data frame. What if the data frames are already in the workspace. I have five wide zoos that I cast as data frames, then melt. Here's the head of one:
> head(df.mon.ssf.ret)
date variable value
1 2009.000 AA1C NA
2 2009.083 AA1C NA
3 2009.167 AA1C NA
4 2009.250 AA1C NA
5 2009.333 AA1C NA
6 2009.417 AA1C NA
I could merge these on "date" and "variable" with a series of nested merges, but that seems clumsy. Is there a more programmatic way to merge?
If I feel confident that the columns are in the same order in all of the zoos, can I feel confident that melt maintains that ordering and use cbind
? Thanks!
Update:
There's something I'm missing about the usage philosophy of melt. Here's what happens when I merge as a zoo and melt as a very wide data frame using three of the zoos:
> temp <- merge(z.ssf.oi, z.ssf.oig, z.ssf.ret)
> class(temp)
[1] "zoo"
> temp2 <- cbind(index(temp), as.data.frame(temp))
> class(temp2)
[1] "data.frame"
> names(temp2)[1] <- "date"
> dim(temp2)
[1] 12 1204
> temp3 <- melt(temp2, id="date")
Error in data.frame(ids, variable, value) :
arguments imply differing number of rows: 12, 14436
> head(temp2)[, 1:5]
date AA1C.z.ssf.oi AAPL1C.z.ssf.oi ABT1C.z.ssf.oi ABX1C.z.ssf.oi
Jan 2009 Jan 2009 1895.800 49191.25 NA NA
Feb 2009 Feb 2009 1415.579 42650.26 NA 6267.96
Mar 2009 Mar 2009 1501.398 36712.20 NA 11581.65
Apr 2009 Apr 2009 1752.936 74376.27 NA 12168.29
May 2009 May 2009 1942.874 96307.30 NA 13490.60
Jun 2009 Jun 2009 NA 79170.70 NA 16337.21
Update 2: Thanks for the help! Here's a very manual solution
> A <- cbind(index(z.ssf.oi), as.data.frame(z.ssf.oi))
> names(A)[1] <- "date"
> B <- cbind(index(z.ssf.oig), as.data.frame(z.ssf.oig))
> names(B)[1] <- "date"
> C <- cbind(index(z.ssf.ret), as.data.frame(z.ssf.ret))
> names(C)[1] <- "date"
> A.melt <- melt(A, id="date")
> head(A.melt)
date variable value
1 Jan 2009 A1C NA
2 Feb 2009 A1C NA
3 Mar 2009 A1C NA
4 Apr 2009 A1C NA
5 May 2009 A1C NA
6 Jun 2009 A1C NA
> B.melt <- melt(B, id="date")
> C.melt <- melt(C, id="date")
> ans <- merge(merge(A.melt, B.melt, by=c("date", "variable")), C.melt, by=c("date", "variable"))
> names(ans)[3:5] <- c("oi", "oig", "ret")
> head(ans)
date variable oi oig ret
1 Apr 2009 A1C NA NA NA
2 Apr 2009 AA1C NA NA NA
3 Apr 2009 AAPL1C 59316.88 0.3375786 0.008600073
4 Apr 2009 ABB1C NA NA NA
5 Apr 2009 ABT1C NA NA NA
6 Apr 2009 ABX1C NA NA NA
(and the NAs are from an incomplete dataset at home and needing the dial in the filtering from my database)
Update 3: Here are some dputs (I took the [1:10, 1:10] subset of each wide zoo and converted to data frames)
> dput(A)
structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L), class = "factor", .Label = "oi"), date = structure(c(2009,
2009.08333333333, 2009.16666666667, 2009.25, 2009.33333333333,
2009.41666666667, 2009.5, 2009.58333333333, 2009.66666666667,
2009.75), class = "yearmon"), AA1C = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), AAPL1C = c(49226.391, 42662.1589473684, 35354.4254545455,
57161.6495238095, 84362.895, NA, NA, 47011.8519047619, 57852.2171428571,
33058.0090909091), ABT1C = c(NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_),
ABX1C = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), ACE1C = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), ACI1C = c(NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_), ACS1C = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_), ADBE1C = c(NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), ADCT1C = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), ADI1C = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_)), .Names = c("group", "date",
"AA1C", "AAPL1C", "ABT1C", "ABX1C", "ACE1C", "ACI1C", "ACS1C",
"ADBE1C", "ADCT1C", "ADI1C"), row.names = c("Jan 2009", "Feb 2009",
"Mar 2009", "Apr 2009", "May 2009", "Jun 2009", "Jul 2009", "Aug 2009",
"Sep 2009", "Oct 2009"), class = "data.frame")
> dput(B)
structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L), class = "factor", .Label = "oig"), date = structure(c(2009.08333333333,
2009.16666666667, 2009.25, 2009.33333333333, 2009.41666666667,
2009.5, 2009.58333333333, 2009.66666666667, 2009.75, 2009.83333333333
), class = "yearmon"), AA1C = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), AAPL1C = c(-0.143117562125788, -0.187888745830302, 0.480459636485712,
0.389244461579155, NA, NA, NA, 0.207492040517069, -0.559627909130612,
NA), ABT1C = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), ABX1C = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_), ACE1C = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), ACI1C = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), ACS1C = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_), ADBE1C = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), ADCT1C = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), ADI1C = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_)), .Names = c("group", "date", "AA1C", "AAPL1C",
"ABT1C", "ABX1C", "ACE1C", "ACI1C", "ACS1C", "ADBE1C", "ADCT1C",
"ADI1C"), row.names = c("Feb 2009", "Mar 2009", "Apr 2009", "May 2009",
"Jun 2009", "Jul 2009", "Aug 2009", "Sep 2009", "Oct 2009", "Nov 2009"
), class = "data.frame")
> dput(C)
structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L), class = "factor", .Label = "ret"), date = structure(c(2009,
2009.08333333333, 2009.16666666667, 2009.25, 2009.33333333333,
2009.41666666667, 2009.5, 2009.58333333333, 2009.66666666667,
2009.75), class = "yearmon"), AA1C = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), AAPL1C = c(-0.143117562125788, -0.187888745830302, 0.480459636485712,
0.389244461579155, NA, NA, NA, 0.207492040517069, -0.559627909130612,
NA), ABT1C = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), ABX1C = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_), ACE1C = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), ACI1C = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), ACS1C = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_), ADBE1C = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), ADCT1C = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), ADI1C = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_)), .Names = c("group", "date", "AA1C", "AAPL1C",
"ABT1C", "ABX1C", "ACE1C", "ACI1C", "ACS1C", "ADBE1C", "ADCT1C",
"ADI1C"), row.names = c("Feb 2009", "Mar 2009", "Apr 2009", "May 2009",
"Jun 2009", "Jul 2009", "Aug 2009", "Sep 2009", "Oct 2009", "Nov 2009"
), class = "data.frame")
To merge two Pandas DataFrame with common column, use the merge() function and set the ON parameter as the column name.
Use pandas. merge(right, how=None, left_on=None, right_on=None) with right as the pandas. DataFrame to merge with DataFrame , how set to "inner" , left_on as a list of columns from DataFrame , and right_on as a list of columns from right , to join the two DataFrame s.
We can use either pandas. merge() or DataFrame. merge() to merge multiple Dataframes. Merging multiple Dataframes is similar to SQL join and supports different types of join inner , left , right , outer , cross .
Joining two DataFrames can be done in multiple ways (left, right, and inner) depending on what data must be in the final DataFrame.
You could try this. Untested since your example is not reproducible. Give us some dummy data for z.sfff.oi, z.sff.oig and z.sff.ret if you want a better answer. You can use dput() to generate code for a reproducible dataset.
A <- data.frame(Group = "oi", date = as.factor(index(z.ssf.oi),) as.data.frame(z.ssf.oi)))
B <- data.frame(Group = "oig", date = as.factor(index(z.ssf.oig)), as.data.frame(z.ssf.oig)))
C <- data.frame(Group = "ret", date = as.factor(index(z.ssf.ret)), as.data.frame(z.ssf.ret)))
Long <- melt(rbind(A, B, C), id.vars = c("Group", "date")))
cast(date ~ Group, data = Long)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With