I'd like to pandas.DataFrame for every two columns.
For example, I have the following dataframe:
pd.DataFrame([[10,"5%", 20, "10%"],[30,"15%", 40,"20%"]], columns=['error1', '(%)', 'error2', '(%)'])
Then, what I'd like to get is the following dataframe:
pd.DataFrame([["10 (5%)", "20 (10%)"],["30 (15%)", "40 (20%)"]], columns=['error1 (%)', 'error2 (%)'])
You can try:
import pandas as pd
df = pd.DataFrame([[10,"5%", 20, "10%"],[30,"15%", 40,"20%"]],
columns=['error1', '(%)', 'error2', '(%)'])
print df
error1 (%) error2 (%)
0 10 5% 20 10%
1 30 15% 40 20%
cols = (' '.join(w) for w in zip(df.columns[::2], df.columns[1::2]))
print pd.DataFrame(df.ix[:, ::2].astype(str).values +
' (' +
df.ix[:, 1::2].values +
')', index=df.index, columns=cols)
error1 (%) error2 (%)
0 10 (5%) 20 (10%)
1 30 (15%) 40 (20%)
Odd and even columns names:
In [80]: df.columns[::2]
Out[80]: Index([u'error1', u'error2'], dtype='object')
In [81]: df.columns[1::2]
Out[81]: Index([u'(%)', u'(%)'], dtype='object')
List of tuples by zip
:
In [82]: zip(df.columns[::2], df.columns[1::2])
Out[82]: [('error1', '(%)'), ('error2', '(%)')]
Generator - join items of tuples:
In [83]: (' '.join(w) for w in zip(df.columns[::2], df.columns[1::2]))
Out[83]: <generator object <genexpr> at 0x0000000015158EE8>
In [84]: list((' '.join(w) for w in zip(df.columns[::2], df.columns[1::2])))
Out[84]: ['error1 (%)', 'error2 (%)']
Cast integer values to string by astype
and
convert to numpy array by df.values
:
In [89]: df.ix[:, ::2].astype(str).values
Out[89]:
array([['10', '20'],
['30', '40']], dtype=object)
In [90]: df.ix[:, 1::2].values
Out[90]:
array([['5%', '10%'],
['15%', '20%']], dtype=object)
Comparing with another answer [2 rows x 4000 columns]
:
df = pd.DataFrame([[10,"5%", 20, "10%"]*1000,[30,"15%", 40,"20%"]*1000],
columns=['error1', '(%)', 'error2', '(%)']*1000)
def VAL(df):
cols = (' '.join(w) for w in zip(df.columns[::2], df.columns[1::2]))
return pd.DataFrame(df.ix[:, ::2].astype(str).values +
' (' +
df.ix[:, 1::2].values +
')', index=df.index, columns=cols)
def APL(df):
def make_func(offset=0):
def func(x):
return '{} ({})'.format(x[0 + offset], x[1 + offset])
return func
df2 = pd.DataFrame()
for offset in range(0, df.shape[1], 2):
df2['{} (%)'.format(df.columns[offset])] = df.apply(make_func(offset), axis=1)
return df2
VAL(df)
APL(df)
In [97]: %timeit VAL(df)
...: %timeit APL(df)
...:
100 loops, best of 3: 10.4 ms per loop
1 loops, best of 3: 3.65 s per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With