I am trying to understand Haskell realization of memoization , but I don't get how it works:
memoized_fib :: Int -> Integer
memoized_fib = (map fib [0..] !!)
where fib 0 = 0
fib 1 = 1
fib n = memoized_fib(n - 2) + memoized_fib(n - 1)
First of all I even don't understand why 'map'-function get three parameters (function - fib, list [0..], and ||), but not two how it must do.
Updated:
I have tried to rewrite the code, but get the different result:
f' :: (Int -> Int) -> Int -> Int
f' mf 0 = 0
f' mf 1 = 1
f' mf n = mf(n - 2) + mf(n - 1)
f'_list :: [Int]
f'_list = map (f' faster_f') [0..]
faster_f' :: Int -> Int
faster_f' n = f'_list !! n
Why? Is the any error in my reasoning?
First: Haskell supports operator sections. So (+ 2)
is equal to \ x -> x + 2
. This means the expression with map
is equal to \ x -> map fib [0..] !! x
.
Secondly, how this works: this is taking advantage of Haskell's call-by-need evaluation strategy (its laziness).
Initially, the list which results from the map
is not evaluated. Then, when you need to get to some particular index, all the elements up to that point get evaluated. However, once an element is evaluated, it does not get evaluated again (as long as you're referring to the same element). This is what gives you memoization.
Basically, Haskell's lazy evaluation strategy involves memoizing forced values. This memoized fib
function just relies on that behavior.
Here "forcing" a value means evaluating a deferred expression called a thunk. So the list is basically initially stored as a "promise" of a list, and forcing it turns that "promise" into an actual value, and a "promise" for more values. The "promises" are just thunks, but I hope calling it a promise makes more sense.
I'm simplifying a bit, but this should clarify how the actual memoization works.
map
does not take three parameters here.
(map fib [0..] !!)
partially applies (slices) the function (!!)
with map fib [0..]
, a list, as its first (left-hand) argument.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With