Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

melt to two variable columns

Tags:

r

ggplot2

reshape

I have the following variables in a data frame:

[1] "Type"   "I.alt"  "idx06"  "idx07"  "idx08" "farve1" "farve2" 

If I do:

dm <- melt(d, id=c("Type","I.alt")) 

I get these variables:

"Type"     "I.alt"    "variable" "value"    

Where "idx06", "idx07", "idx08", "farve1", "farve2" are represented in "variable".

But what I really want is something like this:

"Type"     "I.alt"    "variable" "value" "variable2" "value2" 

Where "farve1" and "farve2" are represented in variable2 and value2.

The reason I want to do this, is that I'd like something where the line color is green if the value is falling and red if rising. EDIT: Shane has shown how to reshape the data via two melts merged. But my strategy seams to be ill conceived from the beginning - WRONG in one word. See my comment to Shane's solution.

ggplot(dm, aes(x=variable,y=value,group=Type,col=variable2, label=Type,size=I.alt))+ geom_line()+ geom_text(data=subset(dm, variable=="idx08"),hjust=-0.2, size=2.5)+ theme_bw()+ scale_x_discrete(expand=c(0,1))+ opts(legend.position="none") 

I assume I need to cast the molten frame - but I can't figure it out. The data:

d <- structure(list(Type = structure(c(8L, 21L, 23L, 20L, 6L, 14L,  3L, 24L, 2L, 28L, 32L, 22L, 15L, 29L, 1L, 17L, 18L, 33L, 25L,  13L, 30L, 11L, 26L, 9L, 12L, 4L, 5L, 27L, 16L, 19L, 10L, 31L,  7L), .Label = c("Alvorligere vold", "Andre strafferetlige særlove",  "Andre tyverier", "Bedrageri", "Brandstiftelse", "Butikstyverier m.v.",  "Dokumentfalsk", "Færdselslovovertræd. i øvrigt", "Færdselsuheld med spiritus",  "Falsk forklaring i øvrigt", "Forbr. mod off. myndighed m.v.",  "Freds- og ærekrænkelser", "Hæleri", "Hærværk", "Indbrud i bank, forretn. m.v.",  "Indbrud i fritidshuse, garager mv", "Indbrud i villaer, lejligheder mv",  "Love vedr. forsvaret og lign.", "Love vedr. spil, bev., næring",  "Lov om euforiserende stoffer", "Mangler ved køretøj", "Røveri",  "Simpel vold", "Spiritus- og promillekørsel", "Trusler", "Tyv./brugstyv. af andet",  "Tyv./brugstyv. af cykel", "Tyv./brugstyv. af indr. køretøj",  "Tyv/brugstyv. af knallert", "Tyveri fra bil, båd m.v.", "Ulovlig omgang med hittegods",  "Våbenloven", "Vold o.l. mod off. myndighed"), class = "factor"),  I.alt = c(16137L, 9519L, 5930L, 5502L, 4887L, 3582L, 3101L,  1738L, 1660L, 1649L, 1551L, 1412L, 1338L, 1164L, 1154L, 1057L,  931L, 907L, 857L, 724L, 681L, 644L, 641L, 505L, 450L, 419L,  405L, 328L, 324L, 324L, 320L, 281L, 262L), idx06 = c(1, 1,  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), idx07 = c(0.972675591417568,  0.766866371450899, 0.931743805516597, 0.813047711781889,  0.88728323699422, 0.96420233463035, 0.855743544078362, 1.03710247349823,  0.751470588235294, 0.90443686006826, 0.808403361344538, 0.902834008097166,  0.718181818181818, 0.904555314533623, 1.02717391304348, 0.68957345971564,  1.10324483775811, 0.93030303030303, 0.805309734513274, 0.843003412969283,  0.74914089347079, 0.824786324786325, 1.04060913705584, 1.09150326797386,  0.977941176470588, 0.892405063291139, 0.966666666666667,  0.828125, 0.696, 0.813559322033898, 0.697841726618705, 0.88235294117647,  0.62280701754386), idx08 = c(0.986612873647533, 0.712685595207085,  0.840579710144927, 0.865628042843233, 0.93757225433526, 0.823346303501945,  0.905609973285841, 1.03356890459364, 0.689705882352941, 0.909556313993174,  0.798319327731092, 0.955465587044534, 0.714545454545455,  0.620390455531453, 1.10869565217391, 0.815165876777251, 0.64306784660767,  0.818181818181818, 0.722713864306785, 0.627986348122867,  0.59106529209622, 0.927350427350427, 1.21319796954315, 1.20915032679739,  1.33088235294118, 0.759493670886076, 1.40833333333333, 0.734375,  0.896, 0.932203389830508, 0.60431654676259, 0.872549019607843,  0.675438596491228), farve1 = c("green", "green", "green",  "green", "green", "green", "green", "red", "green", "green",  "green", "green", "green", "green", "red", "green", "red",  "green", "green", "green", "green", "green", "red", "red",  "green", "green", "green", "green", "green", "green", "green",  "green", "green"), farve2 = c("red", "green", "green", "red",  "red", "green", "red", "green", "green", "red", "green",  "red", "green", "green", "red", "red", "green", "green",  "green", "green", "green", "red", "red", "red", "red", "green",  "red", "green", "red", "red", "green", "green", "red")), .Names = c("Type",  "I.alt", "idx06", "idx07", "idx08", "farve1", "farve2"), class = "data.frame", row.names = c(NA, -33L)) 
like image 274
Andreas Avatar asked Oct 09 '09 16:10

Andreas


People also ask

How do I melt multiple columns into one column in R?

To convert multiple columns into single column in an R data frame, we can use unlist function. For example, if we have data frame defined as df and contains four columns then the columns of df can be converted into a single by using data. frame(x=unlist(df)).

What does melt () do in Python?

Pandas melt() function is used to change the DataFrame format from wide to long. It's used to create a specific format of the DataFrame object where one or more columns work as identifiers. All the remaining columns are treated as values and unpivoted to the row axis and only two columns - variable and value.

What is the opposite of melt in R?

5. 4. In package reshape2 the opposite of melt is cast.

What is melting a dataset?

Melting in R programming is done to organize the data. It is performed using melt() function which takes dataset and column values that has to be kept constant. Using melt(), dataframe is converted into long format and stretches the data frame.


1 Answers

This doesn't answer your question about cast, but you could certainly subset and do two melts, followed by a merge:

dm1 <- melt(d[,c("Type","I.alt","idx06","idx07","idx08")], id=c("Type","I.alt")) dm2 <- melt(d[,c("Type","I.alt","farve1","farve2")], id=c("Type","I.alt")) colnames(dm2) <- c("Type", "I.alt", "variable2", "value2") dm <- merge(dm1, dm2) 

Or, equivalently, do one melt (like you're currently doing) then subset the melted dataframe twice (idx <- variable %in% c("idx06","idx07","idx08") as one and !idx as the other) and merge that output.

Either way you get what you want:

> head(dm)               Type I.alt variable    value variable2 value2 1 Alvorligere vold  1154    idx08 1.108696    farve1    red 2 Alvorligere vold  1154    idx08 1.108696    farve2    red 3 Alvorligere vold  1154    idx07 1.027174    farve1    red 4 Alvorligere vold  1154    idx07 1.027174    farve2    red 5 Alvorligere vold  1154    idx06 1.000000    farve1    red 6 Alvorligere vold  1154    idx06 1.000000    farve2    red 
like image 148
Shane Avatar answered Sep 25 '22 14:09

Shane