I am aware that with C malloc and posix_memaligh one can allocate contiguous memory from the virtual address space of a process. However, I was wondering whether somehow one can allocate a buffer of physically contiguous memory? I am investigating side channel attacks that exploit L2 cache so I want to be sure that I can access the right cache lines..
Your best and easiest take at continuous memory is to request a single "huge" page from the system. The availability of those depends on your CPU and kernel options (on x86_64 the 2MB huge pages are usually available and some CPUs can also do 1GB pages; other architectures can be more flexible than this). Check out Hugepagesize
field in /proc/meminfo
for the size of huge pages on your setup.
Those can be accessed in two ways:
By means of a MAP_HUGETLB
flag passed to mmap()
. This way you can be sure that the "huge" virtual page corresponds to a continuous physical memory range. Unfortunately, whether the kernel can supply you with a "huge" page depends on many factors (current layout of memory utilization, kernel options, etc - also see the hugepages
kernel boot parameter).
By means of mapping a file from a dedicated HugeTLB filesystem (see here: http://lwn.net/Articles/375096/). With HugeTLB file system you can configure the number of huge pages available in advance for some assurance that the necessary amount of huge pages will be available.
The other approach is to write a kernel module which will allocate continuous physical memory on the kernel side and then map it into your process' address space on request. This approach is sometimes employed on special purpose hardware in embedded systems. Of course, there's still no guarantee that the kernel side memory allocator will be able to come with an appropriately sized continuous physical address range, so on some occasions such address ranges are pre-reserved on boot (one dumb approach is to pass max_addr
parameter to kernel on boot to leave some of the RAM out of kernel's reach).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With