Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Matplotlib overlapping annotations / text

I'm trying to stop annotation text overlapping in my graphs. The method suggested in the accepted answer to Matplotlib overlapping annotations looks extremely promising, however is for bar graphs. I'm having trouble converting the "axis" methods over to what I want to do, and I don't understand how the text lines up.

import sys
import matplotlib.pyplot as plt


# start new plot
plt.clf()
plt.xlabel("Proportional Euclidean Distance")
plt.ylabel("Percentage Timewindows Attended")
plt.title("Test plot")

together = [(0, 1.0, 0.4), (25, 1.0127692669427917, 0.41), (50, 1.016404709797609, 0.41), (75, 1.1043426359673716, 0.42), (100, 1.1610446924342996, 0.44), (125, 1.1685687930691457, 0.43), (150, 1.3486407784550272, 0.45), (250, 1.4013999168008104, 0.45)]
together.sort()

for x,y,z in together:
    plt.annotate(str(x), xy=(y, z), size=8)

eucs = [y for (x,y,z) in together]
covers = [z for (x,y,z) in together]

p1 = plt.plot(eucs,covers,color="black", alpha=0.5)

plt.savefig("test.png")

Images (if this works) can be found here (this code):

image1

and here (more complicated):

image2

like image 924
homebrand Avatar asked Sep 29 '13 02:09

homebrand


People also ask

How do you avoid overlapping plots in python?

Dot Size. You can try to decrease marker size in your plot. This way they won't overlap and the patterns will be clearer.

What is BBOX in Matplotlib?

BboxTransformTo is a transformation that linearly transforms points from the unit bounding box to a given Bbox. In your case, the transform itself is based upon a TransformedBBox which again has a Bbox upon which it is based and a transform - for this nested instance an Affine2D transform.

What is PLT Tight_layout ()?

The tight_layout() function in pyplot module of matplotlib library is used to automatically adjust subplot parameters to give specified padding.


3 Answers

I just wanted to post here another solution, a small library I wrote to implement this kind of things: https://github.com/Phlya/adjustText An example of the process can be seen here: enter image description here

Here is the example image:

import matplotlib.pyplot as plt
from adjustText import adjust_text
import numpy as np
together = [(0, 1.0, 0.4), (25, 1.0127692669427917, 0.41), (50, 1.016404709797609, 0.41), (75, 1.1043426359673716, 0.42), (100, 1.1610446924342996, 0.44), (125, 1.1685687930691457, 0.43), (150, 1.3486407784550272, 0.45), (250, 1.4013999168008104, 0.45)]
together.sort()

text = [x for (x,y,z) in together]
eucs = [y for (x,y,z) in together]
covers = [z for (x,y,z) in together]

p1 = plt.plot(eucs,covers,color="black", alpha=0.5)
texts = []
for x, y, s in zip(eucs, covers, text):
    texts.append(plt.text(x, y, s))

plt.xlabel("Proportional Euclidean Distance")
plt.ylabel("Percentage Timewindows Attended")
plt.title("Test plot")
adjust_text(texts, only_move={'points':'y', 'texts':'y'}, arrowprops=dict(arrowstyle="->", color='r', lw=0.5))
plt.show()

enter image description here

If you want a perfect figure, you can fiddle around a little. First, let's also make text repel the lines - for that we just create lots of virtual points along them using scipy.interpolate.interp1d.

We want to avoid moving the labels along the x-axis, because, well, why not do it for illustrative purposes. For that we use the parameter only_move={'points':'y', 'text':'y'}. If we want to move them along x axis only in the case that they are overlapping with text, use move_only={'points':'y', 'text':'xy'}. Also in the beginning the function chooses optimal alignment of texts relative to their original points, so we only want that to happen along the y axis too, hence autoalign='y'. We also reduce the repelling force from points to avoid text flying too far away due to our artificial avoidance of lines. All together:

from scipy import interpolate
p1 = plt.plot(eucs,covers,color="black", alpha=0.5)
texts = []
for x, y, s in zip(eucs, covers, text):
    texts.append(plt.text(x, y, s))

f = interpolate.interp1d(eucs, covers)
x = np.arange(min(eucs), max(eucs), 0.0005)
y = f(x)    
    
plt.xlabel("Proportional Euclidean Distance")
plt.ylabel("Percentage Timewindows Attended")
plt.title("Test plot")
adjust_text(texts, x=x, y=y, autoalign='y',
            only_move={'points':'y', 'text':'y'}, force_points=0.15,
            arrowprops=dict(arrowstyle="->", color='r', lw=0.5))
plt.show()

enter image description here

like image 112
Phlya Avatar answered Oct 28 '22 16:10

Phlya


Easy solution here: (for jupyter notebooks)

%matplotlib notebook
import mplcursors

plt.plot.scatter(y=YOUR_Y_DATA, x =YOUR_X_DATA)


mplcursors.cursor(multiple = True).connect(
    "add", lambda sel: sel.annotation.set_text(
          YOUR_ANOTATION_LIST[sel.target.index]
))

Right click on a dot to show its anotation.

Left click on an anotation to close it.

Right click and drag on an anotation to move it.

enter image description here

like image 34
Tomas G. Avatar answered Oct 28 '22 15:10

Tomas G.


With a lot of fiddling, I figured it out. Again credit for the original solution goes to the answer for Matplotlib overlapping annotations .

I don't however know how to find the exact width and height of the text. If someone knows, please post an improvement (or add a comment with the method).

import sys
import matplotlib
import matplotlib.pyplot as plt
import numpy as np

def get_text_positions(text, x_data, y_data, txt_width, txt_height):
    a = zip(y_data, x_data)
    text_positions = list(y_data)
    for index, (y, x) in enumerate(a):
        local_text_positions = [i for i in a if i[0] > (y - txt_height) 
                            and (abs(i[1] - x) < txt_width * 2) and i != (y,x)]
        if local_text_positions:
            sorted_ltp = sorted(local_text_positions)
            if abs(sorted_ltp[0][0] - y) < txt_height: #True == collision
                differ = np.diff(sorted_ltp, axis=0)
                a[index] = (sorted_ltp[-1][0] + txt_height, a[index][1])
                text_positions[index] = sorted_ltp[-1][0] + txt_height*1.01
                for k, (j, m) in enumerate(differ):
                    #j is the vertical distance between words
                    if j > txt_height * 2: #if True then room to fit a word in
                        a[index] = (sorted_ltp[k][0] + txt_height, a[index][1])
                        text_positions[index] = sorted_ltp[k][0] + txt_height
                        break
    return text_positions

def text_plotter(text, x_data, y_data, text_positions, txt_width,txt_height):
    for z,x,y,t in zip(text, x_data, y_data, text_positions):
        plt.annotate(str(z), xy=(x-txt_width/2, t), size=12)
        if y != t:
            plt.arrow(x, t,0,y-t, color='red',alpha=0.3, width=txt_width*0.1, 
                head_width=txt_width, head_length=txt_height*0.5, 
                zorder=0,length_includes_head=True)

# start new plot
plt.clf()
plt.xlabel("Proportional Euclidean Distance")
plt.ylabel("Percentage Timewindows Attended")
plt.title("Test plot")

together = [(0, 1.0, 0.4), (25, 1.0127692669427917, 0.41), (50, 1.016404709797609, 0.41), (75, 1.1043426359673716, 0.42), (100, 1.1610446924342996, 0.44), (125, 1.1685687930691457, 0.43), (150, 1.3486407784550272, 0.45), (250, 1.4013999168008104, 0.45)]
together.sort()

text = [x for (x,y,z) in together]
eucs = [y for (x,y,z) in together]
covers = [z for (x,y,z) in together]

p1 = plt.plot(eucs,covers,color="black", alpha=0.5)

txt_height = 0.0037*(plt.ylim()[1] - plt.ylim()[0])
txt_width = 0.018*(plt.xlim()[1] - plt.xlim()[0])

text_positions = get_text_positions(text, eucs, covers, txt_width, txt_height)

text_plotter(text, eucs, covers, text_positions, txt_width, txt_height)

plt.savefig("test.png")
plt.show()

Creates http://i.stack.imgur.com/xiTeU.png enter image description here

The more complicated graph is now http://i.stack.imgur.com/KJeYW.png, still a bit iffy but much better! enter image description here

like image 28
homebrand Avatar answered Oct 28 '22 16:10

homebrand