Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

matplotlib generic colormap from tab10

This question is related to this one from SO (matplotlib-change-colormap-tab20-to-have-three-colors)

I would like to tweak the tab10 colormap in a way that I can change the alpha level of each color in as many steps as I would like to. Below is an example (for 9 color with 3 alpha levels) which does not yield the expected output. Furthermore, it is not generic enough (because of the if elif staements).

Any ideas how I could do that ?

In this example, I do have 3 groups with 3 subgroups:

import pandas as pd
from matplotlib import pyplot as plt
import numpy as np

n_feature = 3
sub_feature = 3
col = []
for index in range(n_feature*sub_feature):
# loop over colors and change the last entry in descending order 3 times
        col.append(list(plt.cm.tab10(index)))

i = 0        
for item in col:
# loop over colors and change the last entry in descending order 3 times
    if i == 0:
        item[-1] = 0.9
        i+=1
    elif i == 1:
        item[-1] = 0.7
        i+=1
    elif i == 2:
        item[-1] = 0.5
        i = 0

gr = df.groupby(['a', 'a1'])

for index, item in enumerate(gr):
    name, val = item
    y = val.iloc[0,2:].values
    x = np.arange(len(y))
    plt.plot(x, y, '.-', color=col[index])

plt.show()

enter image description here

This is the data:

{'a': {0: 'A', 1: 'A', 2: 'A', 3: 'B', 4: 'B', 5: 'B', 6: 'C', 7: 'C', 8: 'C'}, 'a1': {0: 1, 1: 2, 2: 3, 3: 1, 4: 2, 5: 3, 6: 1, 7: 2, 8: 3}, 'b': {0: 1.0, 1: 5.0, 2: 9.0, 3: 1.5, 4: 5.5, 5: 9.5, 6: 1.75, 7: 5.75, 8: 9.75}, 'c': {0: 2.0, 1: 6.0, 2: 10.0, 3: 2.5, 4: 6.5, 5: 10.5, 6: 2.75, 7: 6.75, 8: 10.75}, 'd': {0: 3.0, 1: 7.0, 2: 11.0, 3: 3.5, 4: 7.5, 5: 11.5, 6: 3.75, 7: 7.75, 8: 11.75}, 'e': {0: 4.0, 1: 8.0, 2: 12.0, 3: 4.5, 4: 8.5, 5: 12.5, 6: 4.75, 7: 8.75, 8: 12.75}}

like image 443
Moritz Avatar asked Nov 10 '17 12:11

Moritz


People also ask

What is the default Matplotlib colormap?

The new default colormap used by matplotlib. cm. ScalarMappable instances is 'viridis' (aka option D).

What is CMAP =' viridis?

( cmaps.viridis is a matplotlib.colors.ListedColormap ) import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import colormaps as cmaps img=mpimg.imread('stinkbug.png') lum_img = np.flipud(img[:,:,0]) imgplot = plt.pcolormesh(lum_img, cmap=cmaps.viridis)

How do you reverse a colormap in Python?

We can reverse the colormap of the plot with the help of two methods: By using the reversed() function to reverse the colormap. By using “_r” at the end of colormap name.


1 Answers

You may use the HSV system to obtain differently saturated and luminated colors for the same hue. Suppose you have at most 10 categories, then the tab10 map can be used to get a certain number of base colors. From those you can choose a couple of lighter shades for the subcategories.

The following would be a function categorical_cmap, which takes as input the number of categories (nc) and the number of subcategories (nsc) and returns a colormap with nc*nsc different colors, where for each category there are nsc colors of same hue.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors

def categorical_cmap(nc, nsc, cmap="tab10", continuous=False):
    if nc > plt.get_cmap(cmap).N:
        raise ValueError("Too many categories for colormap.")
    if continuous:
        ccolors = plt.get_cmap(cmap)(np.linspace(0,1,nc))
    else:
        ccolors = plt.get_cmap(cmap)(np.arange(nc, dtype=int))
    cols = np.zeros((nc*nsc, 3))
    for i, c in enumerate(ccolors):
        chsv = matplotlib.colors.rgb_to_hsv(c[:3])
        arhsv = np.tile(chsv,nsc).reshape(nsc,3)
        arhsv[:,1] = np.linspace(chsv[1],0.25,nsc)
        arhsv[:,2] = np.linspace(chsv[2],1,nsc)
        rgb = matplotlib.colors.hsv_to_rgb(arhsv)
        cols[i*nsc:(i+1)*nsc,:] = rgb       
    cmap = matplotlib.colors.ListedColormap(cols)
    return cmap

c1 = categorical_cmap(4, 3, cmap="tab10")
plt.scatter(np.arange(4*3),np.ones(4*3)+1, c=np.arange(4*3), s=180, cmap=c1)

c2 = categorical_cmap(2, 5, cmap="tab10")
plt.scatter(np.arange(10),np.ones(10), c=np.arange(10), s=180, cmap=c2)

c3 = categorical_cmap(5, 4, cmap="tab10")
plt.scatter(np.arange(20),np.ones(20)-1, c=np.arange(20), s=180, cmap=c3)    

plt.margins(y=0.3)
plt.xticks([])
plt.yticks([0,1,2],["(5, 4)", "(2, 5)", "(4, 3)"])
plt.show()

enter image description here

like image 93
ImportanceOfBeingErnest Avatar answered Oct 03 '22 10:10

ImportanceOfBeingErnest