Hi I`d like to get a bar chart of this kind. the problem is how to set corresponding xlables by selection?
I coded as follow to delete undesired country labels but the graph has nan as labels as well.
countries=['United States','Mexico','Japan','China','Korea,Rep.','Ireland','France','Italy']
new_index=list(df.index)
for i in range(len(new_index)):
if new_index[i] not in countries :
new_index[i]=np.nan
And here is my result,with nan in the labels and the distance between bars much wider:
For the data:
import numpy as np
import pandas as pd
#Overall Country list
Countries=['United States','Mexico','Japan','China','Korea,Rep.','Ireland','France','Italy','Czech Republic',
'Austria',
'Slovak Republic',
'Slovenia',
'Germany',
'Portugal',
'Hungary',
'Colombia',
'New Zealand',
'Norway',
'Latvia']
#Countries to highlight
Desired=['United States','Mexico','Japan','China','Korea,Rep.','Ireland','France','Italy']
np.random.seed(0)
Value=np.random.rand(len(Countries))
df = pd.DataFrame({'Countries': Countries,'Value': Value,})
df.sort_values(['Value'],inplace=True)
df.set_index('Countries',drop=True,inplace=True)
ax_1 = df['Value'].plot(kind='bar', title ="graph", figsize=(10, 6), fontsize=12)
ax_1.set_xlabel("Country Name", fontsize=12)
plt.show()
Run through the x-ticks and then disable few of them based on countries
list.
import numpy as np
import pandas as pd
#Overall Country list
Countries=['United States','Mexico','Japan','China','Korea,Rep.','Ireland','France','Italy','Czech Republic',
'Austria',
'Slovak Republic',
'Slovenia',
'Germany',
'Portugal',
'Hungary',
'Colombia',
'New Zealand',
'Norway',
'Latvia']
#Countries to highlight
Desired=['United States','Mexico','Japan','China','Korea,Rep.','Ireland','France','Italy']
np.random.seed(0)
Value=np.random.rand(len(Countries))
df = pd.DataFrame({'Countries': Countries,'Value': Value,})
df.sort_values(['Value'],inplace=True)
df.set_index('Countries',drop=True,inplace=True)
ax_1 = df['Value'].plot(kind='bar', title ="graph", figsize=(10, 6), fontsize=12)
ax_1.set_xlabel("Country Name", fontsize=12)
for ticks in ax_1.xaxis.get_major_ticks():
if ticks.label1.get_text() not in Desired:
ticks.label1.set_visible(False)
ax_1.patches[df.index.get_indexer([ticks.label1.get_text()])[0]].set_facecolor('w')
ax_1.patches[df.index.get_indexer([ticks.label1.get_text()])[0]].set_edgecolor('black')
else:
ax_1.patches[df.index.get_indexer([ticks.label1.get_text()])[0]].set_facecolor('r')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With