I'm porting an algorithm that works in Matlab to numpy and observed a strange behavior. The relevant segment of code is
P = eye(4)*1e20;
A = [1 -0.015 -0.025 -0.035; 0.015 1 0.035 -0.025; 0.025 -0.035 1 0.015; 0.035 0.025 -0.015 1];
V1 = A*(P*A')
V2 = (A*P)*A'
This code, when I run with Matlab, provides the following matrices:
V1 = 1.0021e+20 0 -8.0000e+00 0
0 1.0021e+20 0 0
-8.0000e+00 0 1.0021e+20 0
0 0 0 1.0021e+20
V2 = 1.0021e+20 0 -8.0000e+00 0
0 1.0021e+20 0 0
-8.0000e+00 0 1.0021e+20 0
0 0 0 1.0021e+20
Note that V1 and V2 are the same, as expected.
When the same code runs in Octave, it provides:
V1 = 1.0021e+20 4.6172e+01 -1.3800e+02 1.8250e+02
-4.6172e+01 1.0021e+20 -1.8258e+02 -1.3800e+02
1.3801e+02 1.8239e+02 1.0021e+20 -4.6125e+01
-1.8250e+02 1.3800e+02 4.6125e+01 1.0021e+20
V2 = 1.0021e+20 -4.6172e+01 1.3801e+02 -1.8250e+02
4.6172e+01 1.0021e+20 1.8239e+02 1.3800e+02
-1.3800e+02 -1.8258e+02 1.0021e+20 4.6125e+01
1.8250e+02 -1.3800e+02 -4.6125e+01 1.0021e+20
In numpy, the segment becomes
from numpy import array, dot, eye
A = numpy.array([[1, -0.015, -0.025, -0.035],[0.015, 1, 0.035, -0.025],[0.025, -0.035, 1, 0.015],[0.035, 0.025, -0.015, 1]])
P = numpy.eye(4)*1e20
print numpy.dot(A,numpy.dot(P,A.transpose()))
print numpy.dot(numpy.dot(A,P),A.transpose())
which outputs
[[ 1.00207500e+20 4.61718750e+01 -1.37996094e+02 1.82500000e+02]
[ -4.61718750e+01 1.00207500e+20 -1.82582031e+02 -1.38000000e+02]
[ 1.38011719e+02 1.82386719e+02 1.00207500e+20 -4.61250000e+01]
[ -1.82500000e+02 1.38000000e+02 4.61250000e+01 1.00207500e+20]]
[[ 1.00207500e+20 -4.61718750e+01 1.38011719e+02 -1.82500000e+02]
[ 4.61718750e+01 1.00207500e+20 1.82386719e+02 1.38000000e+02]
[ -1.37996094e+02 -1.82582031e+02 1.00207500e+20 4.61250000e+01]
[ 1.82500000e+02 -1.38000000e+02 -4.61250000e+01 1.00207500e+20]]
So, both Octave and numpy provides the same answer, but it's very different from Matlab's. The first point is that V1 != V2, which doesn't seem right. The other point is that, although the non-diagonal elements are many orders of magnitude smaller than the diagonal ones, this seems to be causing some problem in my algorithm.
Does anyone knows way numpy and Octave behave this way?
They use doubles internally, which have only about 15 digits precision. Your math operations likely exceed this, which causes the mathematically wrong results.
Worth a read: http://floating-point-gui.de/
Edit: From the docs I gather that there is no higher precision available for Numpy. It seems that SymPy though may give you the needed precision - if that library works for you as well.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With