I was wondering how can matlab multiply two matrices so fast. When multiplying two NxN matrices, N^3 multiplications are performed. Even with the Strassen Algorithm it takes N^2.8 multiplications, which is still a large number. I was running the following test program:
a = rand(2160);
b = rand(2160);
tic;a*b;toc
2160 was used because 2160^3=~10^10 ( a*b should be about 10^10 multiplications)
I got:
Elapsed time is 1.164289 seconds.
(I'm running on 2.4Ghz notebook and no threading occurs) which mean my computer made ~10^10 operation in a little more than 1 second.
How this could be??
It's a combination of several things:
Here's the numbers on my machine: Core i7 920 @ 3.5 GHz (4 cores)
>> a = rand(10000);
>> b = rand(10000);
>> tic;a*b;toc
Elapsed time is 52.624931 seconds.
Task Manager shows 4 cores of CPU usage.
Now for some math:
Number of multiplies = 10000^3 = 1,000,000,000,000 = 10^12
Max multiplies in 53 secs =
(3.5 GHz) * (4 cores) * (2 mul/cycle via SSE) * (52.6 secs) = 1.47 * 10^12
So Matlab is achieving about 1 / 1.47 = 68%
efficiency of the maximum possible CPU throughput.
I see nothing out of the ordinary.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With