I have a 3D image, divided into contiguous regions where each voxel has the same value. The value assigned to this region is unique to the region and serves as a label. The example image below describes the 2D case:
1 1 1 1 2 2 2
1 1 1 2 2 2 3
Im = 1 4 1 2 2 3 3
4 4 4 4 3 3 3
4 4 4 4 3 3 3
I want to create a graph describing adjaciency between these regions. In the above case, this would be:
0 1 0 1
A = 1 0 1 1
0 1 0 1
1 1 1 0
I'm looking for a speedy solution to do this for large 3D images in MATLAB. I came up with a solution that iterates over all regions, which takes 0.05s
per iteration - unfortunately, this will take over half an hour for an image with 32'000 regions. Does anybody now a more elegant way of doing this? I'm posting the current algorithm below:
labels = unique(Im); % assuming labels go continuously from 1 to N
A = zeros(labels);
for ii=labels
% border mask to find neighbourhood
dil = imdilate( Im==ii, ones(3,3,3) );
border = dil - (Im==ii);
neighLabels = unique( Im(border>0) );
A(ii,neighLabels) = 1;
end
imdilate
is the bottleneck I would like to avoid.
Thank you for your help!
I came up with a solution which is a combination of Divakar's and teng's answers, as well as my own modifications and I generalised it to the 2D or 3D case.
To make it more efficient, I should probably pre-allocate the r
and c
, but in the meantime, this is the runtime:
117x159x126
and 32000
separate regions: 0.79s
0.004671s
with this solution, 0.002136s
with Divakar's solution, 0.03995s
with teng's solution.I haven't tried extending the winner (Divakar) to the 3D case, though!
noDims = length(size(Im));
validim = ones(size(Im))>0;
labels = unique(Im);
if noDims == 3
Im = padarray(Im,[1 1 1],'replicate', 'post');
shifts = {[-1 0 0] [0 -1 0] [0 0 -1]};
elseif noDims == 2
Im = padarray(Im,[1 1],'replicate', 'post');
shifts = {[-1 0] [0 -1]};
end
% get value of the neighbors for each pixel
% by shifting the image in each direction
r=[]; c=[];
for i = 1:numel(shifts)
tmp = circshift(Im,shifts{i});
r = [r ; Im(validim)];
c = [c ; tmp(validim)];
end
A = sparse(r,c,ones(size(r)), numel(labels), numel(labels) );
% make symmetric, delete diagonal
A = (A+A')>0;
A(1:size(A,1)+1:end)=0;
Thanks for the help!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With