frames:
df 1: contains multiple rows of the same id with 500 column values
id|val.1|val.2|...|val.500
---------------------------------
1 | 240 | 234 |...|228
1 | 224 | 222 |...|230
1 | 238 | 240 |...|240
2 | 277 | 270 |...|255
2 | 291 | 290 |...|265
2 | 284 | 282 |...|285
df 2: contains only one unique id (row) that matches df-1 id column with 500 column values
id|val.1|val.2|...|val.500
---------------------------------
1 | 250 | 240 |...|245
2 | 280 | 282 |...|281
I would like to divide df 1 column values by the corresponding column value in df 2 based on their id to end up with a df 3:
id|val.1|val.2|...|val.500
---------------------------------
1 | 0.96| 0.98|...|0.93
1 | 0.90| 0.93|...|0.94
1 | 0.95| 1.00|...|0.98
2 | 0.99| 0.96|...|0.91
2 | 1.04| 1.03|...|0.94
2 | 1.01| 1.00|...|1.01
Basically weighting df 1 values by df 2 based on their id and column value. I've been scratching my head for a while now about the best way to go about this, and not making much progress. any guidance would be greatly appreciated. Thanks
Two possible approaches:
1: 'wide'-approach
With the dplyr
and purrr
packages:
library(dplyr)
library(purrr)
df12 <- left_join(df1, df2, by = 'id')
cbind(id=df12[,1], map2_df(df12[,2:4], df12[,5:7], `/`))
With the data.table
package (method borrowed from here):
library(data.table)
# convert to 'data.tables'
setDT(df1)
setDT(df2)
# creates two vectors of matching columnnames
xcols = names(df1)[-1]
icols = paste0("i.", xcols)
# join and do the calculation
df1[df2, on = 'id', Map('/', mget(xcols), mget(icols)), by = .EACHI]
which both give:
id val.1 val.2 val.3
1: 1 0.9600000 0.9750000 0.9306122
2: 1 0.8960000 0.9250000 0.9387755
3: 1 0.9520000 1.0000000 0.9795918
4: 2 0.9892857 0.9574468 0.9074733
5: 2 1.0392857 1.0283688 0.9430605
6: 2 1.0142857 1.0000000 1.0142349
2: 'long'-approach
Another option is to reshape your dataframes into long format, then merge
/join
them and do the calculation.
With the data.table
-package:
library(data.table)
dt1 <- melt(setDT(df1), id = 1)
dt2 <- melt(setDT(df2), id = 1)
dt1[dt2, on = c('id','variable'), value := value/i.value][]
With the dplyr
and tidyr
packages:
library(dplyr)
library(tidyr)
df1 %>%
gather(variable, value, -id) %>%
left_join(., df2 %>% gather(variable, value, -id), by = c('id','variable')) %>%
mutate(value = value.x/value.y) %>%
select(id, variable, value)
which both give:
id variable value
1: 1 val.1 0.9600000
2: 1 val.1 0.8960000
3: 1 val.1 0.9520000
4: 2 val.1 0.9892857
5: 2 val.1 1.0392857
6: 2 val.1 1.0142857
7: 1 val.2 0.9750000
8: 1 val.2 0.9250000
9: 1 val.2 1.0000000
10: 2 val.2 0.9574468
11: 2 val.2 1.0283688
12: 2 val.2 1.0000000
13: 1 val.3 0.9306122
14: 1 val.3 0.9387755
15: 1 val.3 0.9795918
16: 2 val.3 0.9074733
17: 2 val.3 0.9430605
18: 2 val.3 1.0142349
Used data:
df1 <- structure(list(id = c(1, 1, 1, 2, 2, 2), val.1 = c(240, 224, 238, 277, 291, 284),
val.2 = c(234, 222, 240, 270, 290, 282), val.3 = c(228, 230, 240, 255, 265, 285)),
.Names = c("id", "val.1", "val.2", "val.3"), class = "data.frame", row.names = c(NA, -6L))
df2 <- structure(list(id = c(1, 2), val.1 = c(250, 280), val.2 = c(240, 282), val.3 = c(245, 281)),
.Names = c("id", "val.1", "val.2", "val.3"), class = "data.frame", row.names = c(NA, -2L))
As long as the data.frames are ordered properly by column and both have the same columns, then I think the following base R code will accomplish what you want.
cbind(df1[1], df1[-1] / df2[match(df1$id, df2$id), -1])
id val.1 val.2 val.500
1 1 0.9600000 0.9750000 0.9306122
2 1 0.8960000 0.9250000 0.9387755
3 1 0.9520000 1.0000000 0.9795918
4 2 0.9892857 0.9574468 0.9074733
5 2 1.0392857 1.0283688 0.9430605
6 2 1.0142857 1.0000000 1.0142349
Here, match(df1$id, df2$id)
will return the row indices of df1 that correspond to the ids of df2, so df2[match(df1$id, df2$id), -1]
will return the corresponding rows of df2 as a data.frame with the id variable removed. This data.frame then matches df1 in shape when the id variable is removed and df1[-1] / df2[match(df1$id, df2$id), -1]
performs the division. Finally cbind
prepends the id variable to the final data.frame.
data
df1 <- structure(list(id = c(1L, 1L, 1L, 2L, 2L, 2L), val.1 = c(240L,
224L, 238L, 277L, 291L, 284L), val.2 = c(234L, 222L, 240L, 270L,
290L, 282L), val.500 = c(228L, 230L, 240L, 255L, 265L, 285L)), .Names = c("id",
"val.1", "val.2", "val.500"), class = "data.frame", row.names = c(NA,
-6L))
df2 <- structure(list(id = 1:2, val.1 = c(250L, 280L), val.2 = c(240L,
282L), val.500 = c(245L, 281L)), .Names = c("id", "val.1", "val.2",
"val.500"), class = "data.frame", row.names = c(NA, -2L))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With