I have a dataframe
df <- data.frame(var1=c(10,20,30,40,50), var2=c(rep(0.3,5)), BYGROUP_OBSNUM=c(0:4))
var1 var2 BYGROUP_OBSNUM
10 0.3 0
20 0.3 1
30 0.3 2
40 0.3 3
50 0.3 4
I need to perform calculations for each row using dplyr as my real dataframe is really huge and dplyr is very efficient.
What I want:
var1 var2 BYGROUP_OBSNUM VAR1_NEW
10 0.3 0 10
20 0.3 1 23
30 0.3 2 36.9
40 0.3 3 51.07
50 0.3 4 65.321
How is this achieved:
var1 var2 BYGROUP_OBSNUM VAR1_NEW
10 0.3 0 10
20 0.3 1 20+10*0.3
30 0.3 2 30+20*0.3+10*0.3^2
40 0.3 3 40+30*0.3+20*0.3^2+10*0.3^3
50 0.3 4 50+40*0.3+30*0.3^2+20*0.3^3+10*0.3^4
Therefore for each row the formula is:
var1[i]+lag(var1,1)*var2^1+lag(var1,2)*var2^2 +....
till the lag(var1) reaches the row where BYGROUP_OBSNUM is 0
What I have achieved till now:
df1<-df %>%
mutate(var3=ifelse ((!(var2==0) | (!(BYGROUP_OBSNUM==0))), var2, 0)) %>%
rowwise()%>%
ungroup() %>%
mutate(var1_new=var1+lag(var1,1)*var2)
I need to change the last line such that the formula takes the lag from lag(var1,1) till lag(var1,BYGROUP_OBSNUM) for each row and power of var2 also increases from 1 to BYGROUP_OBSNUM. How do I do this?
Here is a custom function that can be used with dplyr to yield the results you are after. It works with the group_by
function as well.
my.func <- function(x){
mapply(function(v1,v2,n) {
if(n == 1) {
as.numeric(v1[n])
} else {
sum(v1, x[rev(seq(1:(n-1))),1] * v2 ^ seq(1:(n-1)))
}
}, x[,"var1"], x[,"var2"], seq(1:nrow(x)))
}
df <- df %>%
# group_by(COLUMNS, TO, GROUP, BY) %>%
do(data.frame(., my.func(.))) %>%
select(var1, var2, BYGROUP_OBSNUM, VAR1_NEW = my.func...)
Made the final solution to--
df<-data.frame(var1=c(1:10),var2=c(rep(c(0,0.1),each=5)),BYGROUP_OBSNUM=c(0:4))
my.func <- function(x){mapply(function(v1,v2,v3,n) {
if(v2==0 | v3==0){ as.numeric(v1) }
else {
sum(v1, x[rev(seq(1:(n-1))),1][1:v3] * v2 ^ seq(1:(n-1))[1:v3]) } },
x[,"var1"], x[,"var2"], x[,"BYGROUP_OBSNUM"],seq(1:nrow(x)))
}
df1 <- df %>%
do(data.frame(., my.func(.))) %>%
mutate(VAR1_NEW = my.func...)%>%
select(-my.func...)
completed 100k rows in 1.42 mins! This function helped a lot! Thanks!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With