The intrinsic _mm_slli_si128
will do a logical shift left of a 128 bit register, but is restricted to immediate shift values, and shifts by bytes not bits.
I can use an intrinsic like _mm_sll_epi64
or _mm_sll_epi32
to shift left a set of values within the __m128i
register, but these don't carry the "overflow" bits.
For a shift by N bits imagine that I could do a something like:
_mm_sll_epi64
_mm_srr_epi64
(for the bits I want to carry: move them into the low order )(but probably also have to include checks of N relative to 64).
Is there a better way?
Not your ideal solution, but if you want to rotate or shift an SSE register by a number of bits that is a multiple of 8, then the PSHUFB
instruction (and the _mm_shuffle_epi8()
intrinsic) can help. It takes a second SSE register as an input; each byte in the register holds a value that is used to index the bytes in the first input register.
This came up as a side issue in a blog post (of mine) on unusual C preprocessor uses. For the 127 different shift offsets, there are four different optimal sequences of SSE2 instructions for a bit shift. The preprocessor makes it reasonable to construct a shift function that amounts to a 129-way switch statement. Pardon the raw-code here; I'm unfamiliar with posting code directly here. Check the blog post for an explanation of what's going on.
#include <emmintrin.h>
typedef __m128i XMM;
#define xmbshl(x,n) _mm_slli_si128(x,n) // xm <<= 8*n -- BYTE shift left
#define xmbshr(x,n) _mm_srli_si128(x,n) // xm >>= 8*n -- BYTE shift right
#define xmshl64(x,n) _mm_slli_epi64(x,n) // xm.hi <<= n, xm.lo <<= n
#define xmshr64(x,n) _mm_srli_epi64(x,n) // xm.hi >>= n, xm.lo >>= n
#define xmand(a,b) _mm_and_si128(a,b)
#define xmor(a,b) _mm_or_si128(a,b)
#define xmxor(a,b) _mm_xor_si128(a,b)
#define xmzero _mm_setzero_si128()
XMM xm_shl(XMM x, unsigned nbits)
{
// These macros generate (1,2,5,6) SSE2 instructions, respectively:
#define F1(n) case 8*(n): x = xmbshl(x, n); break;
#define F2(n) case n: x = xmshl64(xmbshl(x, (n)>>3), (n)&15); break;
#define F5(n) case n: x = xmor(xmshl64(x, n), xmshr64(xmbshl(x, 8), 64-(n))); break;
#define F6(n) case n: x = xmor(xmshl64(xmbshl(x, (n)>>3), (n)&15),\
xmshr64(xmbshl(x, 8+((n)>>3)), 64-((n)&155))); break;
// These macros expand to 7 or 49 cases each:
#define DO_7(f,x) f((x)+1) f((x)+2) f((x)+3) f((x)+4) f((x)+5) f((x)+6) f((x)+7)
#define DO_7x7(f,y) DO_7(f,(y)+1*8) DO_7(f,(y)+2*8) DO_7(f,(y)+3*8) DO_7(f,(y)+4*8) \
DO_7(f,(y)+5*8) DO_7(f,(y)+6*8) DO_7(f,(y)+7*8)
switch (nbits) {
case 0: break;
DO_7(F5, 0) // 1..7
DO_7(F1, 0) // 8,16,..56
DO_7(F1, 7) // 64,72,..120
DO_7x7(F6, 0) // 9..15 17..23 ... 57..63 i.e. [9..63]\[16,24,..,56]
DO_7x7(F2,56) // 65..71 73..79 ... 121..127 i.e. [65..127]\[64,72,..,120]
default: x = xmzero;
}
return x;
}
xm_shr amounts to the above but swapping "shl" and "shr" everywhere in the F[1256] macros. HTH.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With