Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

loading 1GB data into hbase taking 1 hour

I want to load 1GB (10 Million Records) CSV file into Hbase. I wrote Map-Reduce Program for it. My Code is working fine but taking 1 hour to complete. Last Reducer is taking more than half an hour time. Could anyone please help me out?

My Code is as follows:

Driver.Java


    package com.cloudera.examples.hbase.bulkimport;

    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.hbase.HBaseConfiguration;
    import org.apache.hadoop.hbase.KeyValue;
    import org.apache.hadoop.hbase.client.HTable;
    import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
    import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

    /**
     * HBase bulk import example
* Data preparation MapReduce job driver *
    *
  1. args[0]: HDFS input path *
  2. args[1]: HDFS output path *
  3. args[2]: HBase table name *
*/ public class Driver { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); /* * NBA Final 2010 game 1 tip-off time (seconds from epoch) * Thu, 03 Jun 2010 18:00:00 PDT */ // conf.setInt("epoch.seconds.tipoff", 1275613200); conf.set("hbase.table.name", args[2]); // Load hbase-site.xml HBaseConfiguration.addHbaseResources(conf); Job job = new Job(conf, "HBase Bulk Import Example"); job.setJarByClass(HBaseKVMapper.class); job.setMapperClass(HBaseKVMapper.class); job.setMapOutputKeyClass(ImmutableBytesWritable.class); job.setMapOutputValueClass(KeyValue.class); job.setInputFormatClass(TextInputFormat.class); HTable hTable = new HTable(conf, args[2]); // Auto configure partitioner and reducer HFileOutputFormat.configureIncrementalLoad(job, hTable); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); // Load generated HFiles into table // LoadIncrementalHFiles loader = new LoadIncrementalHFiles(conf); // loader.doBulkLoad(new Path(args[1]), hTable); } }

HColumnEnum.java


        package com.cloudera.examples.hbase.bulkimport;

    /**
     * HBase table columns for the 'srv' column family
     */
    public enum HColumnEnum {
      SRV_COL_employeeid ("employeeid".getBytes()),
      SRV_COL_eventdesc ("eventdesc".getBytes()),
      SRV_COL_eventdate ("eventdate".getBytes()),
      SRV_COL_objectname ("objectname".getBytes()),
      SRV_COL_objectfolder ("objectfolder".getBytes()),
      SRV_COL_ipaddress ("ipaddress".getBytes());

      private final byte[] columnName;

      HColumnEnum (byte[] column) {
        this.columnName = column;
      }

      public byte[] getColumnName() {
        return this.columnName;
      }
    }

HBaseKVMapper.java

package com.cloudera.examples.hbase.bulkimport;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import au.com.bytecode.opencsv.CSVParser;

/**
 * HBase bulk import example
 * <p>
 * Parses Facebook and Twitter messages from CSV files and outputs
 * <ImmutableBytesWritable, KeyValue>.
 * <p>
 * The ImmutableBytesWritable key is used by the TotalOrderPartitioner to map it
 * into the correct HBase table region.
 * <p>
 * The KeyValue value holds the HBase mutation information (column family,
 * column, and value)
 */
public class HBaseKVMapper extends
    Mapper<LongWritable, Text, ImmutableBytesWritable, KeyValue> {

  final static byte[] SRV_COL_FAM = "srv".getBytes();
  final static int NUM_FIELDS = 6;

  CSVParser csvParser = new CSVParser();
  int tipOffSeconds = 0;
  String tableName = "";

  // DateTimeFormatter p = DateTimeFormat.forPattern("MMM dd, yyyy HH:mm:ss")
  //    .withLocale(Locale.US).withZone(DateTimeZone.forID("PST8PDT"));

  ImmutableBytesWritable hKey = new ImmutableBytesWritable();
  KeyValue kv;

  /** {@inheritDoc} */
  @Override
  protected void setup(Context context) throws IOException,
      InterruptedException {
    Configuration c = context.getConfiguration();

  //  tipOffSeconds = c.getInt("epoch.seconds.tipoff", 0);
    tableName = c.get("hbase.table.name");
  }

  /** {@inheritDoc} */
  @Override
  protected void map(LongWritable key, Text value, Context context)
      throws IOException, InterruptedException {

    /*if (value.find("Service,Term,") > -1) {
      // Skip header
      return;
    }*/

    String[] fields = null;

    try {
      fields = value.toString().split(",");
      //csvParser.parseLine(value.toString());
    } catch (Exception ex) {
      context.getCounter("HBaseKVMapper", "PARSE_ERRORS").increment(1);
      return;
    }

    if (fields.length != NUM_FIELDS) {
      context.getCounter("HBaseKVMapper", "INVALID_FIELD_LEN").increment(1);
      return;
    }

    // Get game offset in seconds from tip-off
  /*  DateTime dt = null;

    try {
      dt = p.parseDateTime(fields[9]);
    } catch (Exception ex) {
      context.getCounter("HBaseKVMapper", "INVALID_DATE").increment(1);
      return;
    }

    int gameOffset = (int) ((dt.getMillis() / 1000) - tipOffSeconds);
    String offsetForKey = String.format("%04d", gameOffset);

    String username = fields[2];
    if (username.equals("")) {
      username = fields[3];
    }*/

    // Key: e.g. "1200:twitter:jrkinley"
    hKey.set(String.format("%s|%s|%s|%s|%s|%s", fields[0], fields[1], fields[2],fields[3],fields[4],fields[5])
        .getBytes());

    // Service columns
    if (!fields[0].equals("")) {
      kv = new KeyValue(hKey.get(), SRV_COL_FAM,
          HColumnEnum.SRV_COL_employeeid.getColumnName(), fields[0].getBytes());
      context.write(hKey, kv);
    }

    if (!fields[1].equals("")) {
      kv = new KeyValue(hKey.get(), SRV_COL_FAM,
          HColumnEnum.SRV_COL_eventdesc.getColumnName(), fields[1].getBytes());
      context.write(hKey, kv);
    }

    if (!fields[2].equals("")) {
      kv = new KeyValue(hKey.get(), SRV_COL_FAM,
          HColumnEnum.SRV_COL_eventdate.getColumnName(), fields[2].getBytes());
      context.write(hKey, kv);
    }

    if (!fields[3].equals("")) {
      kv = new KeyValue(hKey.get(), SRV_COL_FAM,
          HColumnEnum.SRV_COL_objectname.getColumnName(), fields[3].getBytes());
      context.write(hKey, kv);
    }

    if (!fields[4].equals("")) {
      kv = new KeyValue(hKey.get(), SRV_COL_FAM,
          HColumnEnum.SRV_COL_objectfolder.getColumnName(), fields[4].getBytes());
      context.write(hKey, kv);
    }

    if (!fields[5].equals("")) {
      kv = new KeyValue(hKey.get(), SRV_COL_FAM,
          HColumnEnum.SRV_COL_ipaddress.getColumnName(), fields[5].getBytes());
      context.write(hKey, kv);
    }


    context.getCounter("HBaseKVMapper", "NUM_MSGS").increment(1);

    /*
     * Output number of messages per quarter and before/after game. This should
     * correspond to the number of messages per region in HBase
     */
  /*  if (gameOffset < 0) {
      context.getCounter("QStats", "BEFORE_GAME").increment(1);
    } else if (gameOffset < 900) {
      context.getCounter("QStats", "Q1").increment(1);
    } else if (gameOffset < 1800) {
      context.getCounter("QStats", "Q2").increment(1);
    } else if (gameOffset < 2700) {
      context.getCounter("QStats", "Q3").increment(1);
    } else if (gameOffset < 3600) {
      context.getCounter("QStats", "Q4").increment(1);
    } else {
      context.getCounter("QStats", "AFTER_GAME").increment(1);
    }*/
  }
}

Please help me to improve the performance or Please let me know if you have any alternate solution with sample code.

MY mapred-site.xml

 <?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>

<property>
  <name>mapred.job.tracker</name>
    <value>namenode:54311</value>
    </property>

<property>
  <name>mapred.reduce.parallel.copies</name>
    <value>20</value>
    </property>

<property>
  <name>tasktracker.http.threads</name>
    <value>50</value>
    </property>

<property>
  <name>mapred.job.shuffle.input.buffer.percent</name>
    <value>0.70</value>
    </property>

<property>
  <name>mapred.tasktracker.map.tasks.maximum</name>
    <value>4</value>
    </property>

<property>
  <name>mapred.tasktracker.reduce.tasks.maximum</name>
    <value>4</value>
    </property>

<property>
  <name>mapred.map.tasks</name>
    <value>4</value>
    </property>

<property>
  <name>reduce.map.tasks</name>
    <value>4</value>
    </property>

<property>
  <name>mapred.job.shuffle.merge.percent</name>
    <value>0.65</value>
    </property>

<property>
  <name>mapred.task.timeout</name>
    <value>1200000</value>
    </property>

<property>
    <name>mapred.child.java.opts</name>
        <value>-Xms1024M -Xmx2048M</value>
        </property>



<property>
  <name>mapred.job.reuse.jvm.num.tasks</name>
    <value>-1</value>
    </property>

<property>
    <name>mapred.compress.map.output</name>
    <value>true</value>
</property>

<property>
    <name>mapred.map.output.compression.codec</name>
    <value>com.hadoop.compression.lzo.LzoCodec</value>
</property>

<property>
    <name>io.sort.mb</name>
    <value>800</value>
</property>


<property>
  <name>mapred.child.ulimit</name>
    <value>unlimited</value>
    </property>

<property>
<name>io.sort.factor</name>
<value>100</value>
<description>More streams merged at once while sorting files.</description>
</property>  


 <property>
 <name>mapreduce.admin.map.child.java.opts</name>
 <value>-Djava.net.preferIPv4Stack=true</value>
 </property>
 <property>
 <name>mapreduce.admin.reduce.child.java.opts</name>
 <value>-Djava.net.preferIPv4Stack=true</value>
 </property>


<property>
   <name>mapred.min.split.size</name>
   <value>0</value>
</property>

<property>
   <name>mapred.job.map.memory.mb</name>
     <value>-1</value>
     </property>

<property>
   <name>mapred.jobtracker.maxtasks.per.job</name>
        <value>-1</value>
             </property>


</configuration>

hbase-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
    <name>hbase.rootdir</name>
    <value>hdfs://namenode:54310/hbase</value>
    <description>The directory shared by RegionServers.
    </description>
</property>

<property>
    <name>hbase.master</name>
    <value>slave:60000</value>
    <description>The host and port that the HBase master runs at.
    A value of 'local' runs the master and a regionserver
    in a single process.
    </description>
</property>

<property>
    <name>hbase.cluster.distributed</name>
    <value>true</value>
    <description>The mode the cluster will be in. Possible values are
    false: standalone and pseudo-distributed setups with managed Zookeeper
    true: fully-distributed with unmanaged Zookeeper Quorum (see hbase-env.sh)
    </description>
</property>

<property>
    <name>hbase.zookeeper.quorum</name>
    <value>slave</value>
    <description>Comma separated list of servers in the ZooKeeper Quorum.
    For example, "host1.mydomain.com,host2.mydomain.com,host3.mydomain.com".
    By default this is set to localhost for local and pseudo-distributed modes
    of operation. For a fully-distributed setup, this should be set to a full
    list of ZooKeeper quorum servers. If HBASE_MANAGES_ZK is set in hbase-env.sh
    this is the list of servers which we will start/stop ZooKeeper on.
    </description>
</property>

<property>
       <name>hbase.zookeeper.property.clientPort</name>
       <value>2181</value>
</property>

<property>
    <name>hbase.zookeeper.property.dataDir</name>
    <value>/home/hduser/work/zoo_data</value>
    <description>Property from ZooKeeper's config zoo.cfg.
    The directory where the snapshot is stored.
    </description>
</property>

</configuration>

Please help me out so i can improve my performance.

like image 672
Viru Avatar asked May 02 '14 06:05

Viru


1 Answers

First thing, why do we need Mapreduce program for loading data in to Hbase for such a small file(1GB).

In my experience I have processed 5GB Json using Jackson streaming( I don't want to take all json in to memory) and persisted in Hbase with in 8 minutes, by using batching technique.

I used hbase puts in batch List objects of 100000 record.

Below is code snippet through which I achieved this. Same thing can be done while parsing other formats as well)

May be you need to call this method in 2 places

1) with Batch of 100000 records.

2) For processing reminder of your batch records are less than 100000

  public void addRecord(final ArrayList<Put> puts, final String tableName) throws Exception {
        try {
            final HTable table = new HTable(HBaseConnection.getHBaseConfiguration(), getTable(tableName));
            table.put(puts);
            LOG.info("INSERT record[s] " + puts.size() + " to table " + tableName + " OK.");
        } catch (final Throwable e) {
            e.printStackTrace();
        } finally {
            LOG.info("Processed ---> " + puts.size());
            if (puts != null) {
                puts.clear();
            }
        }
    }
like image 141
Ram Ghadiyaram Avatar answered Nov 11 '22 21:11

Ram Ghadiyaram