I have implemented an OpenCV/C++ wrapper for libsvm. When doing a grid-search for SVM parameters (RBF kernel), the prediction always returns the same label. I have created artificial data sets which have very easily separable data (and tried predicting data I just trained on) but still, it returns the same label.
I have used the MATLAB implementation of libsvm and achieved high accuracy on the same data set. I must be doing something wrong with setting up the problem but I've gone through the README many times and I can't quite find the issue.
Here is how I set up the libsvm problem, where data is an OpenCV Mat:
const int rowSize = data.rows;
const int colSize = data.cols;
this->_svmProblem = new svm_problem;
std::memset(this->_svmProblem,0,sizeof(svm_problem));
//dynamically allocate the X matrix...
this->_svmProblem->x = new svm_node*[rowSize];
for(int row = 0; row < rowSize; ++row)
this->_svmProblem->x[row] = new svm_node[colSize + 1];
//...and the y vector
this->_svmProblem->y = new double[rowSize];
this->_svmProblem->l = rowSize;
for(int row = 0; row < rowSize; ++row)
{
for(int col = 0; col < colSize; ++col)
{
//set the index and the value. indexing starts at 1.
this->_svmProblem->x[row][col].index = col + 1;
double tempVal = (double)data.at<float>(row,col);
this->_svmProblem->x[row][col].value = tempVal;
}
this->_svmProblem->x[row][colSize].index = -1;
this->_svmProblem->x[row][colSize].value = 0;
//add the label to the y array, and feature vector to X matrix
double tempVal = (double)labels.at<float>(row);
this->_svmProblem->y[row] = tempVal;
}
}/*createProblem()*/
Here is how I set up the parameters, where svmParams is my own struct for C/Gamma and such:
this->_svmParameter = new svm_parameter;
std::memset(this->_svmParameter,0,sizeof(svm_parameter));
this->_svmParameter->svm_type = svmParams.svmType;
this->_svmParameter->kernel_type = svmParams.kernalType;
this->_svmParameter->C = svmParams.C;
this->_svmParameter->gamma = svmParams.gamma;
this->_svmParameter->nr_weight = 0;
this->_svmParameter->eps = 0.001;
this->_svmParameter->degree = 1;
this->_svmParameter->shrinking = 0;
this->_svmParameter->probability = 1;
this->_svmParameter->cache_size = 100;
I use the provided param/problem checking function and no errors are returned.
I then train as such:
this->_svmModel = svm_train(this->_svmProblem, this->_svmParameter);
And then predict like so:
float pred = (float)svm_predict(this->_svmModel, x[i]);
If anyone could point out where I'm going wrong here I would greatly appreciate it. Thank you!
EDIT:
Using this code I printed the contents of the problem
for(int i = 0; i < rowSize; ++i)
{
std::cout << "[";
for(int j = 0; j < colSize + 1; ++j)
{
std::cout << " (" << this->_svmProblem->x[i][j].index << ", " << this->_svmProblem->x[i][j].value << ")";
}
std::cout << "]" << " <" << this->_svmProblem->y[i] << ">" << std::endl;
}
Here is the output:
[ (1, -1) (2, 0) (-1, 0)] <1>
[ (1, -0.92394) (2, 0) (-1, 0)] <1>
[ (1, -0.7532) (2, 0) (-1, 0)] <1>
[ (1, -0.75977) (2, 0) (-1, 0)] <1>
[ (1, -0.75337) (2, 0) (-1, 0)] <1>
[ (1, -0.76299) (2, 0) (-1, 0)] <1>
[ (1, -0.76527) (2, 0) (-1, 0)] <1>
[ (1, -0.74631) (2, 0) (-1, 0)] <1>
[ (1, -0.85153) (2, 0) (-1, 0)] <1>
[ (1, -0.72436) (2, 0) (-1, 0)] <1>
[ (1, -0.76485) (2, 0) (-1, 0)] <1>
[ (1, -0.72936) (2, 0) (-1, 0)] <1>
[ (1, -0.94004) (2, 0) (-1, 0)] <1>
[ (1, -0.92756) (2, 0) (-1, 0)] <1>
[ (1, -0.9688) (2, 0) (-1, 0)] <1>
[ (1, 0.05193) (2, 0) (-1, 0)] <3>
[ (1, -0.048488) (2, 0) (-1, 0)] <3>
[ (1, 0.070436) (2, 0) (-1, 0)] <3>
[ (1, 0.15191) (2, 0) (-1, 0)] <3>
[ (1, -0.07331) (2, 0) (-1, 0)] <3>
[ (1, 0.019786) (2, 0) (-1, 0)] <3>
[ (1, -0.072793) (2, 0) (-1, 0)] <3>
[ (1, 0.16157) (2, 0) (-1, 0)] <3>
[ (1, -0.057188) (2, 0) (-1, 0)] <3>
[ (1, -0.11187) (2, 0) (-1, 0)] <3>
[ (1, 0.15886) (2, 0) (-1, 0)] <3>
[ (1, -0.0701) (2, 0) (-1, 0)] <3>
[ (1, -0.17816) (2, 0) (-1, 0)] <3>
[ (1, 0.12305) (2, 0) (-1, 0)] <3>
[ (1, 0.058615) (2, 0) (-1, 0)] <3>
[ (1, 0.80203) (2, 0) (-1, 0)] <1>
[ (1, 0.734) (2, 0) (-1, 0)] <1>
[ (1, 0.9072) (2, 0) (-1, 0)] <1>
[ (1, 0.88061) (2, 0) (-1, 0)] <1>
[ (1, 0.83903) (2, 0) (-1, 0)] <1>
[ (1, 0.86604) (2, 0) (-1, 0)] <1>
[ (1, 1) (2, 0) (-1, 0)] <1>
[ (1, 0.77988) (2, 0) (-1, 0)] <1>
[ (1, 0.8578) (2, 0) (-1, 0)] <1>
[ (1, 0.79559) (2, 0) (-1, 0)] <1>
[ (1, 0.99545) (2, 0) (-1, 0)] <1>
[ (1, 0.78376) (2, 0) (-1, 0)] <1>
[ (1, 0.72177) (2, 0) (-1, 0)] <1>
[ (1, 0.72619) (2, 0) (-1, 0)] <1>
[ (1, 0.80149) (2, 0) (-1, 0)] <1>
[ (1, 0.092327) (2, -1) (-1, 0)] <2>
[ (1, 0.019054) (2, -1) (-1, 0)] <2>
[ (1, 0.15287) (2, -1) (-1, 0)] <2>
[ (1, -0.1471) (2, -1) (-1, 0)] <2>
[ (1, -0.068182) (2, -1) (-1, 0)] <2>
[ (1, -0.094567) (2, -1) (-1, 0)] <2>
[ (1, -0.17071) (2, -1) (-1, 0)] <2>
[ (1, -0.16646) (2, -1) (-1, 0)] <2>
[ (1, -0.030421) (2, -1) (-1, 0)] <2>
[ (1, 0.094346) (2, -1) (-1, 0)] <2>
[ (1, -0.14408) (2, -1) (-1, 0)] <2>
[ (1, 0.090025) (2, -1) (-1, 0)] <2>
[ (1, 0.043706) (2, -1) (-1, 0)] <2>
[ (1, 0.15065) (2, -1) (-1, 0)] <2>
[ (1, -0.11751) (2, -1) (-1, 0)] <2>
[ (1, -0.02324) (2, 1) (-1, 0)] <2>
[ (1, 0.0080356) (2, 1) (-1, 0)] <2>
[ (1, -0.17752) (2, 1) (-1, 0)] <2>
[ (1, 0.011135) (2, 1) (-1, 0)] <2>
[ (1, -0.029063) (2, 1) (-1, 0)] <2>
[ (1, 0.15398) (2, 1) (-1, 0)] <2>
[ (1, 0.097746) (2, 1) (-1, 0)] <2>
[ (1, 0.01018) (2, 1) (-1, 0)] <2>
[ (1, 0.015592) (2, 1) (-1, 0)] <2>
[ (1, -0.062793) (2, 1) (-1, 0)] <2>
[ (1, 0.014444) (2, 1) (-1, 0)] <2>
[ (1, -0.1205) (2, 1) (-1, 0)] <2>
[ (1, -0.18011) (2, 1) (-1, 0)] <2>
[ (1, 0.010521) (2, 1) (-1, 0)] <2>
[ (1, 0.036914) (2, 1) (-1, 0)] <2>
Here, the data is printed in the format [ (index, value)...] label.
The artificial dataset I created just has 3 classes, all which are easily separable with a non-linear decision boundary. Each row is a feature vector (observation), with 2 features (x coord, y coord). Libsvm asks to terminate each vector with a -1 label, so I do.
EDIT2:
This edit pertains to my C and Gamma values used for training, as well as data scaling. I normally data between 0 and 1 (as suggested here: http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf). I will scale this fake dataset as well and try again, although I used this same exact dataset with the MATLAB implementation of libsvm and it could separate this unscaled data with 100% accuracy.
For C and Gamma, I also use the values recommended in the guide. I create two vectors and use a double nested loop to try all combinations:
std::vector<double> CList, GList;
double baseNum = 2.0;
for(double j = -5; j <= 15; j += 2) //-5 and 15
CList.push_back(pow(baseNum,j));
for(double j = -15; j <= 3; j += 2) //-15 and 3
GList.push_back(pow(baseNum,j));
And the loop looks like:
for(auto CIt = CList.begin(); CIt != CList.end(); ++CIt) //for all C's
{
double C = *CIt;
for(auto GIt = GList.begin(); GIt != GList.end(); ++GIt) //for all gamma's
{
double gamma = *GIt;
svmParams.svmType = C_SVC;
svmParams.kernalType = RBF;
svmParams.C = C;
svmParams.gamma = gamma;
......training code etc..........
EDIT3:
Since I keep referencing MATLAB, I will show the accuracy differences. Here is a heat map of the accuracy libsvm yields:
And here is the accuracy map MATLAB yields using the same parameters and same C/Gamma grid:
Here is the code used to generate the C/Gamma lists, and how I train:
CList = 2.^(-15:2:15);%(-5:2:15);
GList = 2.^(-15:2:15);%(-15:2:3);
cmd = ['-q -s 0 -t 2 -c ', num2str(C), ' -g ', num2str(gamma)];
model = ovrtrain(yTrain,xTrain,cmd);
EDIT4
As a sanity check, I reformatted my fake scaled dataset to conform to the dataset used by libsvm's Unix/Linux terminal API. I trained and predicted using a C/Gamma found in in the MATLAB accuracy map. The prediction accuracy was 100%. Thus I am absolutely doing something wrong in the C++ implementation.
EDIT5
I loaded the model trained from the Linux terminal into my C++ wrapper class. I then tried predicting the same exact dataset used for training. The accuracy in C++ was still awful! However, I'm very close to narrowing the source of the problem. If MATLAB/Linux both agree in terms of 100% accuracy, and the model it produces has already been proven to yield 100% accuracy on the same dataset that was trained on, and now my C++ wrapper class shows poor performance with the verified model... there are three possible situations:
The code to really inspect now is how I create the svm_node. Here it is again:
svm_node** LibSVM::createNode(INPUT const cv::Mat& data)
{
const int rowSize = data.rows;
const int colSize = data.cols;
//dynamically allocate the X matrix...
svm_node** x = new svm_node*[rowSize];
if(x == NULL)
throw MLInterfaceException("Could not allocate SVM Node Array.");
for(int row = 0; row < rowSize; ++row)
{
x[row] = new svm_node[colSize + 1]; //+1 here for the index-terminating -1
if(x[row] == NULL)
throw MLInterfaceException("Could not allocate SVM Node.");
}
for(int row = 0; row < rowSize; ++row)
{
for(int col = 0; col < colSize; ++col)
{
double tempVal = data.at<double>(row,col);
x[row][col].value = tempVal;
}
x[row][colSize].index = -1;
x[row][colSize].value = 0;
}
return x;
} /*createNode()*/
And prediction:
cv::Mat LibSVM::predict(INPUT const cv::Mat& data)
{
if(this->_svmModel == NULL)
throw MLInterfaceException("Cannot predict; no model has been trained or loaded.");
cv::Mat predMat;
//create the libsvm representation of data
svm_node** x = this->createNode(data);
//perform prediction for each feature vector
for(int i = 0; i < data.rows; ++i)
{
double pred = svm_predict(this->_svmModel, x[i]);
predMat.push_back<double>(pred);
}
//delete all rows and columns of x
for(int i = 0; i < data.rows; ++i)
delete[] x[i];
delete[] x;
return predMat;
}
EDIT6:
For those of you tuning in at home, I trained a model (using optimal C/Gamma found in MATLAB) in C++, saved it to file, and then tried predicting on the training data via Linux terminal. It scored 100%. Something is wrong with my prediction. o_0
EDIT7:
I found the issue finally. I had tremendous bug-tracking help in finding it. I printed the contents of the svm_node** 2D array used for prediction. It was a subset of the createProblem() method. There was a piece of it that I failed to copy + paste over to the new function. It was the index of a given feature; it was never written. There should have been 1 more line:
x[row][col].index = col + 1; //indexing starts at 1
And the prediction works fine now.
It would be useful to see your gamma value, since your data is not normalized that would make a huge difference.
The gamma in libsvm is inversely to the hypersphere radius, so if those spheres are too small with respect to the input range, everything will be activated always and then the model would output always the same value.
So, the two recommendations would be 1) Scale your input values to the range [-1,1]. 2) Play with the gamma values.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With