There are a lot of questions about how to implement factorization, however for production use, I would rather use an open source library to get something efficient and well tested right away. The method I am looking for looks like this:
static int[] getPrimeFactors(int n)
it would return {2,2,3} for n=12
A library may also have an overload for handling long or even BigInteger types
The question is not about a particular application, it is about having a library which handles well this problem. Many people argue that different implementations are needed depending on the range of the numbers, in this regard, I would expect that the library select the most reasonable method at runtime.
By efficient I don't mean "world fastest" (I would not work on the JVM for that...), I just mean dealing with int and long range within a second rather than a hour.
It depends what you want to do. If your needs are modest (say, you want to solve Project Euler problems), a simple implementation of Pollard's rho algorithm will find factors up to ten or twelve digits instantly; if that's what you want, let me know, and I can post some code. If you want a more powerful factoring program that's written in Java, you can look at the source code behind Dario Alpern's applet; I don't know about a test suite, and it's really not designed with an open api, but it does have lots of users and is well tested. Most of the heavy-duty open-source factoring programs are written in C or C++ and use the GMP big-integer library, but you may be able to access them via your language's foreign function interface; look for names like gmp-ecm, msieve, pari or yafu. If those don't satisfy you, a good place to ask for more help is the Mersenne Forum.
If you want to solve your problem, rather than get what you are asking for, you want a table. You can precompute it using silly slow methods, store it, and then look up the factors for any number in microseconds. In particular, you want a table where the smallest factor is listed in an index corresponding to the number--much more memory efficient if you use trial division to remove a few of the smallest primes--and then walk your way down the table until you hit a 1 (meaning no more divisors; what you have left is prime). This will take only two bytes per table entry, which means you can store everything on any modern machine more hefty than a smartphone.
I can demonstrate how to create this if you're interested, and show how to check that it is correct with greater reliability than you could hope to achieve with an active community and unit tests of a complex algorithm (unless you ran the algorithm to generate this table and verified that it was all ok).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With