I am trying to subset each dataframe to exclude rows in which the first column is NA or "". I tried putting the dataframes into a list df
and then using lapply
over each dataframe. The code works, only that I am not sure how to overwrite each dataframe with the subset.
df1 <- data.frame(v1=c(1, 2, 3, NA, NA, NA), v2=rep(1, 6))
df2 <- data.frame(v11=c(2, 3, 4, 5, NA, ""), v22=rep(1, 6))
df3 <- data.frame(v111=c(3, 4, 5, 6, 7, NA), v222=rep(1, 6))
df <- list(df1=df1, df2=df2, df3=df3)
df
$df1
# v1 v2
# 1 1 1
# 2 2 1
# 3 3 1
# 4 NA 1
# 5 NA 1
# 6 NA 1
#
# $df2
# v11 v22
# 1 2 1
# 2 3 1
# 3 4 1
# 4 5 1
# 5 <NA> 1
# 6 1
#
# $df3
# v111 v222
# 1 3 1
# 2 4 1
# 3 5 1
# 4 6 1
# 5 7 1
# 6 NA 1
lapply(names(df), function(x) df[[x]][!(is.na(df[[x]][,1]) | df[[x]][,1]==""), ])
# [[1]]
# v1 v2
# 1 1 1
# 2 2 1
# 3 3 1
#
# [[2]]
# v11 v22
# 1 2 1
# 2 3 1
# 3 4 1
# 4 5 1
#
# [[3]]
# v111 v222
# 1 3 1
# 2 4 1
# 3 5 1
# 4 6 1
# 5 7 1
In the end, I want df3
, for example, to be as follows:
df3
# v111 v222
#1 3 1
#2 4 1
#3 5 1
#4 6 1
#5 7 1
You can simplify your lapply
to the following form (in order to keep the names of the data frames too)
df <- lapply(df, function(x) x[!(is.na(x[1]) | x[1] == ""), ])
Then use list2env
in order to get you data frames back into the global environment
list2env(df, .GlobalEnv)
Then you can inspect your new data frames by just
df1
## v1 v2
## 1 1 1
## 2 2 1
## 3 3 1
etc.
Is this what you are looking for?
df <- lapply(
names(df),
function(x){
df[[x]][!(is.na(df[[x]][,1]) | df[[x]][,1]==""), ]
})
which gives you
> df
[[1]]
v1 v2
1 1 1
2 2 1
3 3 1
[[2]]
v11 v22
1 2 1
2 3 1
3 4 1
4 5 1
[[3]]
v111 v222
1 3 1
2 4 1
3 5 1
4 6 1
5 7 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With