I'm trying to calculate several new variables in my dataframe. Take initial values for example:
Say I have:
Dataset <- data.frame(time=rep(c(1990:1992),2),
geo=c(rep("AT",3),rep("DE",3)),var1=c(1:6), var2=c(7:12))
time geo var1 var2
1 1990 AT 1 7
2 1991 AT 2 8
3 1992 AT 3 9
4 1990 DE 4 10
5 1991 DE 5 11
6 1992 DE 6 12
And I want:
time geo var1 var2 var1_1990 var1_1991 var2_1990 var2_1991
1 1990 AT 1 7 1 2 7 8
2 1991 AT 2 8 1 2 7 8
3 1992 AT 3 9 1 2 7 8
4 1990 DE 4 10 4 5 10 11
5 1991 DE 5 11 4 5 10 11
6 1992 DE 6 12 4 5 10 11
So both time and the variable are changing for the new variables. Here is my attempt:
intitialyears <- c(1990,1991)
intitialvars <- c("var1", "var2")
# ideally, I want code where I only have to change these two vectors
# and where it's possible to change their dimensions
for (i in initialyears){
lapply(initialvars,function(x){
rep(Dataset[time==i,x],each=length(unique(Dataset$time)))
})}
Which runs without error but yields nothing. I would like to assign the variable names in the example (eg. "var1_1990") and immediately make the new variables part of the dataframe. I would also like to avoid the for loop but I don't know how to wrap two lapply's around this function. Should I rather have the function use two arguments? Is the problem that the apply function does not carry the results into my environment? I've been stuck here for a while so I would be grateful for any help!
p.s.: I have the solution to do this combination by combination without apply and the likes but I'm trying to get away from copy and paste:
Dataset$var1_1990 <- c(rep(Dataset$var1[which(Dataset$time==1990)],
each=length(unique(Dataset$time))))
This can be done with subset()
, reshape()
, and merge()
:
merge(Dataset,reshape(subset(Dataset,time%in%c(1990,1991)),dir='w',idvar='geo',sep='_'));
## geo time var1 var2 var1_1990 var2_1990 var1_1991 var2_1991
## 1 AT 1990 1 7 1 7 2 8
## 2 AT 1991 2 8 1 7 2 8
## 3 AT 1992 3 9 1 7 2 8
## 4 DE 1990 4 10 4 10 5 11
## 5 DE 1991 5 11 4 10 5 11
## 6 DE 1992 6 12 4 10 5 11
The column order isn't exactly what you have in your question, but you can fix that up after-the-fact with an index operation, if necessary.
Here's a data.table
method:
require(data.table)
dt <- as.data.table(Dataset)
in_cols = c("var1", "var2")
out_cols = do.call("paste", c(CJ(in_cols, unique(dt$time)), sep="_"))
dt[, (out_cols) := unlist(lapply(.SD, as.list), FALSE), by=geo, .SDcols=in_cols]
# time geo var1 var2 var1_1990 var1_1991 var1_1992 var2_1990 var2_1991 var2_1992
# 1: 1990 AT 1 7 1 2 3 7 8 9
# 2: 1991 AT 2 8 1 2 3 7 8 9
# 3: 1992 AT 3 9 1 2 3 7 8 9
# 4: 1990 DE 4 10 4 5 6 10 11 12
# 5: 1991 DE 5 11 4 5 6 10 11 12
# 6: 1992 DE 6 12 4 5 6 10 11 12
This assumes that the time
variable is identical (and in the same order) for each geo
value.
With dplyr
and tidyr
and using a custom function try the following:
Data
Dataset <- data.frame(time=rep(c(1990:1992),2),
geo=c(rep("AT",3),rep("DE",3)),var1=c(1:6), var2=c(7:12))
Code
library(dplyr); library(tidyr)
intitialyears <- c(1990,1991)
intitialvars <- c("var1", "var2")
#create this function
myTranForm <- function(dataSet, varName, years){
temp <- dataSet %>% select(time, geo, eval(parse(text=varName))) %>%
filter(time %in% years) %>% mutate(time=paste(varName, time, sep="_"))
names(temp)[names(temp) %in% varName] <- "someRandomStringForVariableName"
temp <- temp %>% spread(time, someRandomStringForVariableName)
return(temp)
}
#Then lapply on intitialvars using the custom function
DatasetList <- lapply(intitialvars, function(x) myTranForm(Dataset, x, intitialyears))
#and loop over the data frames in the list
for(i in 1:length(intitialvars)){
Dataset <- left_join(Dataset, DatasetList[[i]])
}
Dataset
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With