In Linux Kernel Development, 3rd ed, this code was given for traversing the children of the current process.
list_for_each(list, ¤t->children) {
task = list_entry(list, struct task_struct, sibling);
/* task now points to one of current’s children */
}
The "sibling" in this idiom looks out of place. What is its purpose?
sibling
is the name of the list_head
structure in struct task_struct
that corresponds to the parent's children list.
That is, in this loop list
always points to a sibling
member of a struct task_struct
, or the children
member of the parent.
I tested zer0stimulus's code with a parent process and 2 children processes. It shows the following children processes list structure:
---------- --------- ---------
(1) | | next | | next | | (1)
----> | children | -----> | sibling | -----> | sibling | ---->
<---- | | <----- | | <----- | | <----
(2) | | prev | | prev | | (2)
---------- --------- ---------
current child process 1 child process 2
(1) is the next pointer in the sibling of the second child process.
(2) is the prev pointer in the children of the current process (parent process).
I'm running on CentOS 6.10 kernel version: 2.6.32-754.el6.x86_64. The code sample involves a proc fs entry and a userspace program.
Proc fs entry:
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/proc_fs.h>
#include <linux/sched.h>
int read_proc(char* buf, char** start, off_t offset,
int count, int* eof, void* data) {
int len = 0;
struct task_struct* task;
struct list_head* list;
printk(KERN_INFO "head: %p", ¤t->children);
list_for_each(list, ¤t->children) {
printk(KERN_INFO "list: %p, list->next: %p, list->prev: %p",
list, list->next, list->prev);
task = list_entry(list, struct task_struct, sibling);
printk(KERN_INFO "%s %d", task->comm, task->pid);
len += sprintf(buf + len, "%s %d\n", task->comm, task->pid);
}
return len;
}
int function_init(void) {
create_proc_read_entry("ps_children_list", 0, NULL, read_proc, NULL);
return 0;
}
void function_cleanup(void) {
remove_proc_entry("ps_children_list", NULL);
}
module_init(function_init);
module_exit(function_cleanup);
Userspace program (no proper error handling):
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
int main() {
printf("pid: %d\n", getpid());
int pipefd[2];
pipe(pipefd);
pid_t pid = fork();
if (pid == 0) {
// first child
sleep(5);
return 0;
}
// parent
printf("first child pid: %d\n", pid);
pid = fork();
if (pid == 0) {
// second child
sleep(5);
return 0;
}
printf("second child pid: %d\n", pid);
char buf[1024];
int fd = open("/proc/ps_children_list", O_RDONLY);
ssize_t sz = read(fd, buf, sizeof(buf));
buf[sz] = '\0';
printf("buf: %s\n", buf);
int status = 0;
wait(&status);
wait(&status);
return 0;
}
And the result from dmesg shows:
head: ffff8801981239e8
list: ffff88019802c518, list->next: ffff88021a5639f8, list->prev: ffff8801981239e8
test 5568
list: ffff88021a5639f8, list->next: ffff8801981239e8, list->prev: ffff88019802c518
test 5569
c518 is the address of the first sibling, whose prev pointer points to children (39e8) and whose next pointer points to the second sibling (39f8). The second sibling's next pointer points back to the children (39e8).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With