I can't save a keras model when using a lambda layer and shared variables. Here's a minimal code that gives this error :
# General imports.
import numpy as np
# Keras for deep learning.
from keras.layers.core import Dense,Lambda
from keras.layers import Input
from keras.models import Model
import keras.backend as K
n_inputs = 20
n_instances = 100
def preprocess(X,minimum,span):
output = (X - minimum)/span
return output
inputs = Input(shape=(n_inputs,),name='input_tensor')
maximum = K.max(inputs)
minimum = K.min(inputs)
span = maximum - minimum
x = Lambda(preprocess,arguments={'minimum':minimum,'span':span})(inputs)
x = Dense(units=100,activation='elu')(x)
outputs = Dense(units=n_inputs,activation='elu')(x)
model = Model(inputs=inputs,outputs=outputs)
model.compile(optimizer='adam', loss='mse')
x = np.array([np.random.randn(20) for i in range(n_instances)])
y = np.array([np.random.randn(20) for i in range(n_instances)])
model.fit(x,y,epochs=10)
model.save('test.h5') # This line doesn't work.
And here's the full error I am getting :
Traceback (most recent call last):
File "C:\Dropbox\HELMo_Gramme\M2\Stage\Programmation\Filter\sanstitre0.py", line 35, in <module>
model.save('test.h5') # This line doesn't work.
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\topology.py", line 2580, in save
save_model(self, filepath, overwrite, include_optimizer)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\models.py", line 111, in save_model
'config': model.get_config()
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\topology.py", line 2421, in get_config
return copy.deepcopy(config)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 215, in _deepcopy_list
append(deepcopy(a, memo))
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 180, in deepcopy
y = _reconstruct(x, memo, *rv)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 280, in _reconstruct
state = deepcopy(state, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 180, in deepcopy
y = _reconstruct(x, memo, *rv)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 280, in _reconstruct
state = deepcopy(state, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 180, in deepcopy
y = _reconstruct(x, memo, *rv)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 280, in _reconstruct
state = deepcopy(state, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 169, in deepcopy
rv = reductor(4)
TypeError: can't pickle _thread.lock objects
The model can be trained and can be used to predict, the issue only appears when saving. I have seen similar errors (e.g. this link) for people using lambda layers but I think my issue is slightly different (most of the times it was using seq2seq.py which I don't use). However it still seems to be linked with deep copy.
If I remove the lambda layer or the external variables it works. I am probably doing something I shouldn't be doing with the variables but I don't know how to do it properly. I need them to be outside of the scope of the preprocess function because I use those same variable in a postprocess function.
I understand that preprocessing inside the model is not the most efficient but I have my reasons to do it and performance is not an issue on this dataset.
I forgot to clarify that I would like to be able to reuse maximum
, minimum
, and span
in another Lambda layer, which is why they are defined outside the scope of preprocess
.
maxim's solution did help, but it still didn't work in my actual code. The difference is that I actually create my model inside a function and return it, and somehow this returns the same type of error.
Example code:
# General imports.
import numpy as np
# Keras for deep learning.
from keras.layers.core import Dense,Lambda
from keras.layers import Input
from keras.models import Model
import keras.backend as K
n_inputs = 101
n_instances = 100
def create_model(n_inputs):
def preprocess(X):
maximum = K.max(inputs)
minimum = K.min(inputs)
span = maximum - minimum
output = (X - minimum)/span
return output
def postprocess(X):
maximum = K.max(inputs)
minimum = K.min(inputs)
span = maximum - minimum
output = X*span + minimum
return output
inputs = Input(shape=(n_inputs,),name='input_tensor')
x = Lambda(preprocess)(inputs)
x = Dense(units=100,activation='elu')(x)
outputs = Dense(units=n_inputs,activation='elu')(x)
outputs = Lambda(postprocess)(outputs)
model = Model(inputs=inputs,outputs=outputs)
model.compile(optimizer='adam', loss='mse')
return model
x = np.array([np.random.randn(n_inputs) for i in range(n_instances)])
y = np.array([np.random.randn(n_inputs) for i in range(n_instances)])
model = create_model(n_inputs)
model.fit(x,y,epochs=10)
model.save('test.h5') # This line doesn't work.
Error :
Traceback (most recent call last):
File "C:\Dropbox\HELMo_Gramme\M2\Stage\Programmation\Filter\sanstitre0.py", line 46, in <module>
model.save('test.h5') # This line doesn't work.
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\topology.py", line 2580, in save
save_model(self, filepath, overwrite, include_optimizer)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\models.py", line 111, in save_model
'config': model.get_config()
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\topology.py", line 2421, in get_config
return copy.deepcopy(config)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 215, in _deepcopy_list
append(deepcopy(a, memo))
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 220, in _deepcopy_tuple
y = [deepcopy(a, memo) for a in x]
File "C:\ProgramData\Anaconda3\lib\copy.py", line 220, in <listcomp>
y = [deepcopy(a, memo) for a in x]
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 220, in _deepcopy_tuple
y = [deepcopy(a, memo) for a in x]
File "C:\ProgramData\Anaconda3\lib\copy.py", line 220, in <listcomp>
y = [deepcopy(a, memo) for a in x]
File "C:\ProgramData\Anaconda3\lib\copy.py", line 180, in deepcopy
y = _reconstruct(x, memo, *rv)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 280, in _reconstruct
state = deepcopy(state, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 180, in deepcopy
y = _reconstruct(x, memo, *rv)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 280, in _reconstruct
state = deepcopy(state, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 180, in deepcopy
y = _reconstruct(x, memo, *rv)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 280, in _reconstruct
state = deepcopy(state, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 150, in deepcopy
y = copier(x, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 240, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "C:\ProgramData\Anaconda3\lib\copy.py", line 169, in deepcopy
rv = reductor(4)
TypeError: can't pickle _thread.lock objects
I need to create my model in a function because I am optimizing hyperparameters and so I iterate over different models with different set of parameters (well I could probably do it in a loop but it's not as nice).
The problem is with lambda arguments: minimum
and span
. They are deduced from the input, but when you define the lambda layer like this:
x = Lambda(preprocess,arguments={'minimum':minimum,'span':span})(inputs)
... they are considered independent arguments that need to be serialized (as a context for lambda). This results in error, because both of them are tensorflow tensors, not static values or a numpy arrays.
Change your code to this:
# `preprocess` encapsulates all intermediate values in itself.
def preprocess(X):
maximum = K.max(X)
minimum = K.min(X)
span = maximum - minimum
output = (X - minimum) / span
return output
inputs = Input(shape=(n_inputs,), name='input_tensor')
x = Lambda(preprocess)(inputs)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With