I'm in the process of evaluating python plotly and/or dash as an alternative to bokeh/holoviews for linked plots that update images.
Requirements: linking data point to image: I have scatter plots and heatmaps in which individual data points represent values derived from images. I would like to link back from a data point in a scatterplot to the image that the numerical value for this data point was derived from. The image data is in a numpy array or can be provided by a callback function. I would like to avoid writing a .png file to disk and embedding the png file in a html element.
linking image selections to data points: e.g. Display an image. Update a plot according to the selection in the image (e.g. a simple histogram).
However, I can't seem to find any widget for image display in plotly/dash. Am I missing something or is there really no such thing?
I would like to link back from a data point in a scatterplot to the image that the numerical value for this data point was derived from.
See https://plot.ly/dash/interactive-graphing. You can assign a callback
to selectedData
, hoverData
, or clickData
property of the dash_core_components.Graph
.
linking image selections to data points: e.g. Display an image. Update a plot according to the selection in the image (e.g. a simple histogram).
You could display a background image on a plotly graph and then use the same selectedData
tools to update callbacks based off of the selected region. Here is a simple example:
import dash
from dash.dependencies import Input, Output
import dash_core_components as dcc
import dash_html_components as html
import base64
import json
app = dash.Dash()
app.css.append_css({'external_url': 'https://codepen.io/chriddyp/pen/dZVMbK.css'})
RANGE = [0, 1]
def InteractiveImage(id, image_path):
encoded_image = base64.b64encode(open(image_path, 'rb').read())
return dcc.Graph(
id=id,
figure={
'data': [],
'layout': {
'xaxis': {
'range': RANGE
},
'yaxis': {
'range': RANGE,
'scaleanchor': 'x',
'scaleratio': 1
},
'height': 600,
'images': [{
'xref': 'x',
'yref': 'y',
'x': RANGE[0],
'y': RANGE[1],
'sizex': RANGE[1] - RANGE[0],
'sizey': RANGE[1] - RANGE[0],
'sizing': 'stretch',
'layer': 'below',
'source': 'data:image/png;base64,{}'.format(encoded_image)
}],
'dragmode': 'select' # or 'lasso'
}
}
)
app.layout = html.Div([
html.Div(className='row', children=[
html.Div(InteractiveImage('image', 'dash_app.png'), className='six columns'),
html.Div(dcc.Graph(id='graph'), className='six columns')
]),
html.Pre(id='console')
])
# display the event data for debugging
@app.callback(Output('console', 'children'), [Input('image', 'selectedData')])
def display_selected_data(selectedData):
return json.dumps(selectedData, indent=2)
@app.callback(Output('graph', 'figure'), [Input('image', 'selectedData')])
def update_histogram(selectedData):
x_range = selectedData['range']['x']
x_range = selectedData['range']['y']
# filter data based off of selection in here
# for simple example purposes, we'll just display the selected RANGE
return {
'data': [{
'x': x_range,
'y': x_range,
'mode': 'markers',
'marker': {
'size': 20
}
}],
'layout': {
'xaxis': {'range': RANGE},
'yaxis': {'range': RANGE, 'scaleanchor': 'x', 'scaleratio': 1},
'height': 600
}
}
if __name__ == '__main__':
app.run_server(debug=True)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With