I have a question about using Keras to which I'm rather new. I'm using a convolutional neural net that feeds its results into a standard perceptron layer, which generates my output. This CNN is fed with a series of images. This is so far quite normal.
Now I like to pass a short non-image input vector directly into the last perceptron layer without sending it through all the CNN layers. How can this be done in Keras?
My code looks like this:
# last CNN layer before perceptron layer
model.add(Convolution2D(200, 2, 2, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Dropout(0.25))
# perceptron layer
model.add(Flatten())
# here I like to add to the input from the CNN an additional vector directly
model.add(Dense(1500, W_regularizer=l2(1e-3)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
Any answers are greatly appreciated, thanks!
The number of hidden neurons should be between the size of the input layer and the size of the output layer. The number of hidden neurons should be 2/3 the size of the input layer, plus the size of the output layer. The number of hidden neurons should be less than twice the size of the input layer.
A single-layer artificial neural network, also called a single-layer, has a single layer of nodes, as its name suggests. Each node in the single layer connects directly to an input variable and contributes to an output variable. Single-layer networks have just one layer of active units.
Choosing Hidden LayersIf data is less complex and is having fewer dimensions or features then neural networks with 1 to 2 hidden layers would work. If data is having large dimensions or features then to get an optimum solution, 3 to 5 hidden layers can be used.
With two hidden layers, the network is able to “represent an arbitrary decision boundary to arbitrary accuracy.”
You didn't show which kind of model you use to me, but I assume that you initialized your model as Sequential
. In a Sequential
model you can only stack one layer after another - so adding a "short-cut" connection is not possible.
For this reason authors of Keras added option of building "graph" models. In this case you can build a graph (DAG) of your computations. It's a more complicated than designing a stack of layers, but still quite easy.
Check the documentation site to look for more details.
Provided your Keras's backend is Theano, you can do the following:
import theano
import numpy as np
d = Dense(1500, W_regularizer=l2(1e-3), activation='relu') # I've joined activation and dense layers, based on assumption you might be interested in post-activation values
model.add(d)
model.add(Dropout(0.5))
model.add(Dense(1))
c = theano.function([d.get_input(train=False)], d.get_output(train=False))
layer_input_data = np.random.random((1,20000)).astype('float32') # refer to d.input_shape to get proper dimensions of layer's input, in my case it was (None, 20000)
o = c(layer_input_data)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With