I have what is conceptually a simple question about Theano but I haven't been able to find the answer (I'll confess upfront to not really understanding how shared variables work in Theano, despite many hours with the tutorials).
I'm trying to implement a "deconvolutional network"; specifically I have a 3-tensor of inputs (each input is a 2D image) and a 4-tensor of codes; for the ith input codes[i] represents a set of codewords which together code for input i.
I've been having a lot of trouble figuring out how to do gradient descent on the codewords. Here are the relevant parts of my code:
idx = T.lscalar()
pre_loss_conv = conv2d(input = codes[idx].dimshuffle('x', 0, 1,2),
filters = dicts.dimshuffle('x', 0,1, 2),
border_mode = 'valid')
loss_conv = pre_loss_conv.reshape((pre_loss_conv.shape[2], pre_loss_conv.shape[3]))
loss_in = inputs[idx]
loss = T.sum(1./2.*(loss_in - loss_conv)**2)
del_codes = T.grad(loss, codes[idx])
delc_fn = function([idx], del_codes)
train_codes = function([input_index], loss, updates = [
[codes, T.set_subtensor(codes[input_index], codes[input_index] -
learning_rate*del_codes[input_index]) ]])
(here codes and dicts are shared tensor variables). Theano is unhappy with this, specifically with defining
del_codes = T.grad(loss, codes[idx])
The error message I'm getting is: theano.gradient.DisconnectedInputError: grad method was asked to compute the gradient with respect to a variable that is not part of the computational graph of the cost, or is used only by a non-differentiable operator: Subtensor{int64}.0
I'm guessing that it wants a symbolic variable instead of codes[idx]; but then I'm not sure how to get everything connected to get the intended effect. I'm guessing I'll need to change the final line to something like
learning_rate*del_codes) ]])
Can someone give me some pointers as to how to define this function properly? I think I'm probably missing something basic about working with Theano but I'm not sure what.
Thanks in advance!
-Justin
Update: Kyle's suggestion worked very nicely. Here's the specific code I used
current_codes = T.tensor3('current_codes')
current_codes = codes[input_index]
pre_loss_conv = conv2d(input = current_codes.dimshuffle('x', 0, 1,2),
filters = dicts.dimshuffle('x', 0,1, 2),
border_mode = 'valid')
loss_conv = pre_loss_conv.reshape((pre_loss_conv.shape[2], pre_loss_conv.shape[3]))
loss_in = inputs[input_index]
loss = T.sum(1./2.*(loss_in - loss_conv)**2)
del_codes = T.grad(loss, current_codes)
train_codes = function([input_index], loss)
train_dicts = theano.function([input_index], loss, updates = [[dicts, dicts - learning_rate*del_dicts]])
codes_update = ( codes, T.set_subtensor(codes[input_index], codes[input_index] - learning_rate*del_codes) )
codes_update_fn = function([input_index], updates = [codes_update])
for i in xrange(num_inputs):
current_loss = train_codes(i)
codes_update_fn(i)
To summarize the findings:
Assigning grad_var = codes[idx]
, then making a new variable such as:
subgrad = T.set_subtensor(codes[input_index], codes[input_index] - learning_rate*del_codes[input_index])
Then calling
train_codes = function([input_index], loss, updates = [[codes, subgrad]])
seemed to do the trick. In general, I try to make variables for as many things as possible. Sometimes tricky problems can arise from trying to do too much in a single statement, plus it is hard to debug and understand later! Also, in this case I think theano needs a shared variable, but has issues if the shared variable is created inside the function that requires it.
Glad this worked for you!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With