Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

K-fold cross validation implementation python

I am trying to implement the k-fold cross-validation algorithm in python. I know SKLearn provides an implementation but still... This is my code as of right now.

from sklearn import metrics
import numpy as np

class Cross_Validation:

@staticmethod
def partition(vector, fold, k):
    size = vector.shape[0]
    start = (size/k)*fold
    end = (size/k)*(fold+1)
    validation = vector[start:end]
    if str(type(vector)) == "<class 'scipy.sparse.csr.csr_matrix'>":
        indices = range(start, end)
        mask = np.ones(vector.shape[0], dtype=bool)
        mask[indices] = False
        training = vector[mask]
    elif str(type(vector)) == "<type 'numpy.ndarray'>":
        training = np.concatenate((vector[:start], vector[end:]))
    return training, validation

@staticmethod
def Cross_Validation(learner, k, examples, labels):
    train_folds_score = []
    validation_folds_score = []
    for fold in range(0, k):
        training_set, validation_set = Cross_Validation.partition(examples, fold, k)
        training_labels, validation_labels = Cross_Validation.partition(labels, fold, k)
        learner.fit(training_set, training_labels)
        training_predicted = learner.predict(training_set)
        validation_predicted = learner.predict(validation_set)
        train_folds_score.append(metrics.accuracy_score(training_labels, training_predicted))
        validation_folds_score.append(metrics.accuracy_score(validation_labels, validation_predicted))
    return train_folds_score, validation_folds_score

The learner parameter is a classifier from SKlearn library, k is the number of folds, examples is a sparse matrix produced by the CountVectorizer (again SKlearn) that is the representation of the bag of words. For example:

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from Cross_Validation import Cross_Validation as cv

vectorizer = CountVectorizer(stop_words='english', lowercase=True, min_df=2, analyzer="word")
data = vectorizer.fit_transform("""textual data""")
clfMNB = MultinomialNB(alpha=.0001)
score = cv.Cross_Validation(clfMNB, 10, data, labels)
print "Train score" + str(score[0])
print "Test score" + str(score[1])

I'm assuming there is some logic error somewhere since the scores are 95% on the training set (as expected) but practically 0 on the test test, but I can't find it.

I hope I was clear. Thanks in advance.

________________________________EDIT___________________________________

This is the code that loads the text into the vector that can be passed to the vectorizer. It also returns the label vector.

from nltk.tokenize import word_tokenize
from Categories_Data import categories
import numpy as np
import codecs
import glob
import os
import re

class Data_Preprocessor:

def tokenize(self, text):
    tokens = word_tokenize(text)
    alpha = [t for t in tokens if unicode(t).isalpha()]
    return alpha

def header_not_fully_removed(self, text):
    if ":" in text.splitlines()[0]:
        return len(text.splitlines()[0].split(":")[0].split()) == 1
    else:
        return False

def strip_newsgroup_header(self, text):
    _before, _blankline, after = text.partition('\n\n')
    if len(after) > 0 and self.header_not_fully_removed(after):
        after = self.strip_newsgroup_header(after)
    return after

def strip_newsgroup_quoting(self, text):
    _QUOTE_RE = re.compile(r'(writes in|writes:|wrote:|says:|said:'r'|^In article|^Quoted from|^\||^>)')
    good_lines = [line for line in text.split('\n')
        if not _QUOTE_RE.search(line)]
    return '\n'.join(good_lines)

def strip_newsgroup_footer(self, text):
    lines = text.strip().split('\n')
    for line_num in range(len(lines) - 1, -1, -1):
        line = lines[line_num]
        if line.strip().strip('-') == '':
            break
    if line_num > 0:
        return '\n'.join(lines[:line_num])
    else:
        return text

def raw_to_vector(self, path, to_be_stripped=["header", "footer", "quoting"], noise_threshold=-1):
    base_dir = os.getcwd()
    train_data = []
    label_data = []
    for category in categories:
        os.chdir(base_dir)
        os.chdir(path+"/"+category[0])
        for filename in glob.glob("*"):
            with codecs.open(filename, 'r', encoding='utf-8', errors='replace') as target:
                data = target.read()
                if "quoting" in to_be_stripped:
                    data = self.strip_newsgroup_quoting(data)
                if "header" in to_be_stripped:
                    data = self.strip_newsgroup_header(data)
                if "footer" in to_be_stripped:
                    data = self.strip_newsgroup_footer(data)
                if len(data) > noise_threshold:
                    train_data.append(data)
                    label_data.append(category[1])
    os.chdir(base_dir)
    return np.array(train_data), np.array(label_data)

This is what "from Categories_Data import categories" imports...

categories = [
    ('alt.atheism',0),
    ('comp.graphics',1),
    ('comp.os.ms-windows.misc',2),
    ('comp.sys.ibm.pc.hardware',3),
    ('comp.sys.mac.hardware',4),
    ('comp.windows.x',5),
    ('misc.forsale',6),
    ('rec.autos',7),
    ('rec.motorcycles',8),
    ('rec.sport.baseball',9),
    ('rec.sport.hockey',10),
    ('sci.crypt',11),
    ('sci.electronics',12),
    ('sci.med',13),
    ('sci.space',14),
    ('soc.religion.christian',15),
    ('talk.politics.guns',16),
    ('talk.politics.mideast',17),
    ('talk.politics.misc',18),
    ('talk.religion.misc',19)
 ]
like image 258
Lorenzo Norcini Avatar asked Aug 09 '16 12:08

Lorenzo Norcini


People also ask

What is k-fold cross-validation Sklearn?

K-fold cross-validation is a superior technique to validate the performance of our model. It evaluates the model using different chunks of the data set as the validation set. We divide our data set into K-folds. K represents the number of folds into which you want to split your data.

What does cross-validation do in Python?

Cross-validation is a statistical method used to estimate the performance of machine learning models. It is a method for assessing how the results of a statistical analysis will generalize to an independent data set.


1 Answers

The reason why your validation score is low is subtle.

The issue is how you have partitioned the dataset. Remember, when doing cross-validation you should randomly split the dataset. It is the randomness that you are missing.

Your data is loaded category by category, which means in your input dataset, class labels and examples follow one after the other. By not doing the random split, you have completely removed a class which your model never sees during the training phase and hence you get a bad result on your test/validation phase.

You can solve this by doing a random shuffle. So, do this:

from sklearn.utils import shuffle    

processor = Data_Preprocessor()
td, tl = processor.raw_to_vector(path="C:/Users/Pankaj/Downloads/ng/")
vectorizer = CountVectorizer(stop_words='english', lowercase=True, min_df=2, analyzer="word")
data = vectorizer.fit_transform(td)
# Shuffle the data and labels
data, tl = shuffle(data, tl, random_state=0)
clfMNB = MultinomialNB(alpha=.0001)
score = Cross_Validation.Cross_Validation(clfMNB, 10, data, tl)

print("Train score" + str(score[0]))
print("Test score" + str(score[1]))
like image 163
Pankaj Daga Avatar answered Oct 12 '22 19:10

Pankaj Daga