My goal is to box-plot the 'score' by 'label', I don't care about "date" and "Cusip". I want to use 'pivot' to reshape the data, so that each Label is in one column and I can boxplot it.
date Cusip Label Score
663182 2015-07-31 00846UAG AAA 138.15
663183 2015-07-31 00846UAH AAA 171.93
663184 2015-07-31 00846UAJ AAA 175.67
663185 2015-07-31 023767AA BB 187.92
663186 2015-07-31 023770AA BB 176.25
t.pivot(index=['date','Cusip'],columns='Label',values='Score')
Errors shows:
NotImplementedError: > 1 ndim Categorical are not supported at this time
More details:
C:\Anaconda3\lib\site-packages\pandas\core\categorical.py in __init__(self, values, categories, ordered, name, fastpath, levels)
285 try:
--> 286 codes, categories = factorize(values, sort=True)
287 except TypeError:
C:\Anaconda3\lib\site-packages\pandas\core\algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
184 uniques = vec_klass()
--> 185 labels = table.get_labels(vals, uniques, 0, na_sentinel, True)
186
pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_labels (pandas\hashtable.c:13921)()
ValueError: Buffer has wrong number of dimensions (expected 1, got 2)
You really should be using pivot_table
as you have got duplicate entries in your date
column.
pd.pivot_table(df, values='Score', index=['date', 'Cusip'], columns=['Label']).boxplot()
As an alternative to .pivot_table()
, which might do unwanted aggregations, you can do
df.set_index(['date', 'Cusip','Label'])['Score'].unstack()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With