I'm trying to JSON encode a complex numpy array, and I've found a utility from astropy (http://astropy.readthedocs.org/en/latest/_modules/astropy/utils/misc.html#JsonCustomEncoder) for this purpose:
import numpy as np
class JsonCustomEncoder(json.JSONEncoder):
""" <cropped for brevity> """
def default(self, obj):
if isinstance(obj, (np.ndarray, np.number)):
return obj.tolist()
elif isinstance(obj, (complex, np.complex)):
return [obj.real, obj.imag]
elif isinstance(obj, set):
return list(obj)
elif isinstance(obj, bytes): # pragma: py3
return obj.decode()
return json.JSONEncoder.default(self, obj)
This works well for a complex numpy array:
test = {'some_key':np.array([1+1j,2+5j, 3-4j])}
As dumping yields:
encoded = json.dumps(test, cls=JsonCustomEncoder)
print encoded
>>> {"some key": [[1.0, 1.0], [2.0, 5.0], [3.0, -4.0]]}
The problem is, I don't a way to read this back into a complex array automatically. For example:
json.loads(encoded)
>>> {"some_key": [[1.0, 1.0], [2.0, 5.0], [3.0, -4.0]]}
Can you guys help me figure out the way to overwrite loads/decoding so that it infers that this must be a complex array? I.E. Instead of a list of 2-element items, it should just put these back into a complex array. The JsonCustomDecoder doesn't have a default()
method to overwrite, and the docs on encoding have too much jargon for me.
Here is my final solution that was adapted from hpaulj's answer, and his answer to this thread: https://stackoverflow.com/a/24375113/901925
This will encode/decode arrays that are nested to arbitrary depth in nested dictionaries, of any datatype.
import base64
import json
import numpy as np
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
"""
if input object is a ndarray it will be converted into a dict holding dtype, shape and the data base64 encoded
"""
if isinstance(obj, np.ndarray):
data_b64 = base64.b64encode(obj.data)
return dict(__ndarray__=data_b64,
dtype=str(obj.dtype),
shape=obj.shape)
# Let the base class default method raise the TypeError
return json.JSONEncoder(self, obj)
def json_numpy_obj_hook(dct):
"""
Decodes a previously encoded numpy ndarray
with proper shape and dtype
:param dct: (dict) json encoded ndarray
:return: (ndarray) if input was an encoded ndarray
"""
if isinstance(dct, dict) and '__ndarray__' in dct:
data = base64.b64decode(dct['__ndarray__'])
return np.frombuffer(data, dct['dtype']).reshape(dct['shape'])
return dct
# Overload dump/load to default use this behavior.
def dumps(*args, **kwargs):
kwargs.setdefault('cls', NumpyEncoder)
return json.dumps(*args, **kwargs)
def loads(*args, **kwargs):
kwargs.setdefault('object_hook', json_numpy_obj_hook)
return json.loads(*args, **kwargs)
def dump(*args, **kwargs):
kwargs.setdefault('cls', NumpyEncoder)
return json.dump(*args, **kwargs)
def load(*args, **kwargs):
kwargs.setdefault('object_hook', json_numpy_obj_hook)
return json.load(*args, **kwargs)
if __name__ == '__main__':
data = np.arange(3, dtype=np.complex)
one_level = {'level1': data, 'foo':'bar'}
two_level = {'level2': one_level}
dumped = dumps(two_level)
result = loads(dumped)
print '\noriginal data', data
print '\nnested dict of dict complex array', two_level
print '\ndecoded nested data', result
Which yields output:
original data [ 0.+0.j 1.+0.j 2.+0.j]
nested dict of dict complex array {'level2': {'level1': array([ 0.+0.j, 1.+0.j, 2.+0.j]), 'foo': 'bar'}}
decoded nested data {u'level2': {u'level1': array([ 0.+0.j, 1.+0.j, 2.+0.j]), u'foo': u'bar'}}
Try traitschema
https://traitschema.readthedocs.io/en/latest/
"Create serializable, type-checked schema using traits and Numpy. A typical use case involves saving several Numpy arrays of varying shape and type."
See to_json()
"This uses a custom JSON encoder to handle numpy arrays but could conceivably lose precision. If this is important, please consider serializing in HDF5 format instead"
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With