In JavaScript I see a few different ways, certain tasks can be performed within an object for example, the object Egg I have below.
Can anyone tell me the difference between each one, why I would use one and not the other etc
var Egg = function(){
//Properties
var shell = "cracked" // private property
this.shell = "cracked" // public property
shell: "cracked" // what is this??
//functions
function cook(){
//standard function
}
cook: function(){
//what kind of function is this?
}
//not sure what this is
details: {
//What is this? an array :S it holds 2 elements?
cost: 1.23,
make: 'Happy Egg';
}
}
Object properties are defined as a simple association between name and value. All properties have a name and value is one of the attributes linked with the property, which defines the access granted to the property. Properties refer to the collection of values which are associated with the JavaScript object.
You can call a function inside an object by declaring the function as a property on the object and invoking it, e.g. obj. sum(2, 2) . An object's property can point to a function, just like it can point to a string, number or other values. Copied!
Object MethodsMethods are actions that can be performed on objects. Object properties can be both primitive values, other objects, and functions. An object method is an object property containing a function definition. JavaScript objects are containers for named values, called properties and methods.
Properties are identified using key values. A key value is either a String value or a Symbol value. There are two types of object properties: The data property and the accessor property.
Your code snippet isn't quite valid, but here are a few things it raises:
You've asked what shell: cracked
is. It's a property initializer. You find them in object initializers (aka "object literals"), which are written like this:
var obj = {
propName: "propValue"
};
That's equivalent to:
var obj = {};
obj.propName = "propValue";
Both of the above create an object with a property called propName
which has a string value "propValue"
. Note that this
doesn't come into it.
There are a couple of places where functions typically come into it vis-a-vis objects:
There are constructor functions, which are functions you call via the new
operator. Here's an example:
// Constructor function
function Foo(name) {
this.name = name;
}
// Usage
var f = new Foo("Fred");
Note the use of the keyword this
in there. That's where you've seen that (most likely). When you call a constructor function via new
, this
refers to the new object created by the new
operator.
this
is a slippery concept in JavaScript (and completely different from this
in C++, Java, or C#), I recommend these two (cough) posts on my blog:
this
You don't have to use constructor functions and new
, another pattern uses "builder" or "factory" functions instead:
// A factory function
function fooFactory(name) {
var rv = {}; // A new, blank object
rv.name = name;
return rv;
}
// Usage
var f = fooFactory("Fred");
You mentioned "private" properties in your question. JavaScript doesn't have private properties at all (yet, they're on their way). But you see people simulate them, by defining functions they use on the object as closures over an execution context (typically a call to a constructor function or a factory function) which contains variables no one else can see, like this:
// Constructor function
function EverUpwards() {
var counter = 0;
this.increment = function() {
return ++counter;
};
}
// Usage:
var e = new EverUpwards();
console.log(e.increment()); // "1"
console.log(e.increment()); // "2"
(That example uses a constructor function, but you can do the same thing with a factory function.)
Note that even though the function we assign to increment
can access counter
, nothing else can. So counter
is effectively a private property. This is because the function is a closure. More: Closures are not complicated
Sure, Ben.
This sort of gets to the bottom of the dynamism of JavaScript. First, we'll look at basics -- if you're coming from a place where you understand class-based languages, like, say, Java or C++/C#, the one that is going to make the most sense is the constructor pattern which was included very early on:
function Egg (type, radius, height, weight) {
// private properties (can also have private functions)
var cost = (type === "ostrich") ? 2.05 * weight : 0.35 * weight;
// public properties
this.type = type;
this.radius = radius;
this.height = height;
this.weight = weight;
this.cracked = false;
// this is a public function which has access to private variables of the instance
this.getCost = function () { return cost; };
}
// this is a method which ALL eggs inherit, which can manipulate "this" properly
// but it has ***NO*** access to private properties of the instance
Egg.prototype.Crack = function () { this.cracked = true; };
var myEgg = new Egg("chicken", 2, 3, 500);
myEgg.cost; // undefined
myEgg.Crack();
myEgg.cracked; // true
That's fine, but sometimes there are easier ways of getting around things. Sometimes you really don't need a class.
What if you just wanted to use one egg, ever, because that's all your recipe called for?
var myEgg = {}; // equals a new object
myEgg.type = "ostrich";
myEgg.cost = "......";
myEgg.Crack = function () { this.cracked = true; };
That's great, but there's still a lot of repetition there.
var myEgg = {
type : "ostrich",
cost : "......",
Crack : function () { this.cracked = true; }
};
Both of the two "myEgg" objects are exactly the same.
The problem here is that EVERY property and EVERY method of myEgg is 100% public to anybody.
The solution to that is immediately-invoking functions:
// have a quick look at the bottom of the function, and see that it calls itself
// with parens "()" as soon as it's defined
var myEgg = (function () {
// we now have private properties again!
var cost, type, weight, cracked, Crack, //.......
// this will be returned to the outside var, "myEgg", as the PUBLIC interface
myReturnObject = {
type : type,
weight : weight,
Crack : Crack, // added benefit -- "cracked" is now private and tamper-proof
// this is how JS can handle virtual-wallets, for example
// just don't actually build a financial-institution around client-side code...
GetSaleValue : function () { return (cracked) ? 0 : cost; }
};
return myReturnObject;
}());
myEgg.GetSaleValue(); // returns the value of private "cost"
myEgg.Crack();
myEgg.cracked // undefined ("cracked" is locked away as private)
myEgg.GetSaleValue(); // returns 0, because "cracked" is true
Hope that's a decent start.
You are mixing syntaxes between object property declaration and simple javascript statements.
// declare an object named someObject with one property
var someObject = {
key: value
};
// declare an anonymous function with some statements in it
// and assign that to a variable named "someFunction"
var someFunction = function () {
// any javascript statements or expressions can go here
};
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With