Following OP's edit:
var now = new Date();
var start = new Date(now.getFullYear(), 0, 0);
var diff = now - start;
var oneDay = 1000 * 60 * 60 * 24;
var day = Math.floor(diff / oneDay);
console.log('Day of year: ' + day);
Edit: The code above will fail when now
is a date in between march 26th and October 29th andnow
's time is before 1AM (eg 00:59:59). This is due to the code not taking daylight savings time into account. You should compensate for this:
var now = new Date();
var start = new Date(now.getFullYear(), 0, 0);
var diff = (now - start) + ((start.getTimezoneOffset() - now.getTimezoneOffset()) * 60 * 1000);
var oneDay = 1000 * 60 * 60 * 24;
var day = Math.floor(diff / oneDay);
console.log('Day of year: ' + day);
This works across Daylight Savings Time changes in all countries (the "noon" one above doesn't work in Australia):
Date.prototype.isLeapYear = function() {
var year = this.getFullYear();
if((year & 3) != 0) return false;
return ((year % 100) != 0 || (year % 400) == 0);
};
// Get Day of Year
Date.prototype.getDOY = function() {
var dayCount = [0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334];
var mn = this.getMonth();
var dn = this.getDate();
var dayOfYear = dayCount[mn] + dn;
if(mn > 1 && this.isLeapYear()) dayOfYear++;
return dayOfYear;
};
I find it very interesting that no one considered using UTC since it is not subject to DST. Therefore, I propose the following:
function daysIntoYear(date){
return (Date.UTC(date.getFullYear(), date.getMonth(), date.getDate()) - Date.UTC(date.getFullYear(), 0, 0)) / 24 / 60 / 60 / 1000;
}
You can test it with the following:
[new Date(2016,0,1), new Date(2016,1,1), new Date(2016,2,1), new Date(2016,5,1), new Date(2016,11,31)]
.forEach(d =>
console.log(`${d.toLocaleDateString()} is ${daysIntoYear(d)} days into the year`));
Which outputs for the leap year 2016 (verified using http://www.epochconverter.com/days/2016):
1/1/2016 is 1 days into the year
2/1/2016 is 32 days into the year
3/1/2016 is 61 days into the year
6/1/2016 is 153 days into the year
12/31/2016 is 366 days into the year
Date.prototype.dayOfYear= function(){
var j1= new Date(this);
j1.setMonth(0, 0);
return Math.round((this-j1)/8.64e7);
}
alert(new Date().dayOfYear())
Luckily this question doesn't specify if the number of the current day is required, leaving room for this answer.
Also some answers (also on other questions) had leap-year problems or used the Date-object. Although javascript's Date object
covers approximately 285616 years (100,000,000 days) on either side of January 1 1970, I was fed up with all kinds of unexpected date inconsistencies across different browsers (most notably year 0 to 99). I was also curious how to calculate it.
So I wrote a simple and above all, small algorithm to calculate the correct (Proleptic Gregorian / Astronomical / ISO 8601:2004 (clause 4.3.2.1), so year 0
exists and is a leap year and negative years are supported) day of the year based on year, month and day.
Note that in AD/BC
notation, year 0 AD/BC does not exist: instead year 1 BC
is the leap-year! IF you need to account for BC notation then simply subtract one year of the (otherwise positive) year-value first!!
I modified (for javascript) the short-circuit bitmask-modulo leapYear algorithm and came up with a magic number to do a bit-wise lookup of offsets (that excludes jan and feb, thus needing 10 * 3 bits (30 bits is less than 31 bits, so we can safely save another character on the bitshift instead of >>>
)).
Note that neither month or day may be 0
. That means that if you need this equation just for the current day (feeding it using .getMonth()
) you just need to remove the --
from --m
.
Note this assumes a valid date (although error-checking is just some characters more).
function dayNo(y,m,d){
return --m*31-(m>1?(1054267675>>m*3-6&7)-(y&3||!(y%25)&&y&15?0:1):0)+d;
}
<!-- some examples for the snippet -->
<input type=text value="(-)Y-M-D" onblur="
var d=this.value.match(/(-?\d+)[^\d]+(\d\d?)[^\d]+(\d\d?)/)||[];
this.nextSibling.innerHTML=' Day: ' + dayNo(+d[1], +d[2], +d[3]);
" /><span></span>
<br><hr><br>
<button onclick="
var d=new Date();
this.nextSibling.innerHTML=dayNo(d.getFullYear(), d.getMonth()+1, d.getDate()) + ' Day(s)';
">get current dayno:</button><span></span>
Here is the version with correct range-validation.
function dayNo(y,m,d){
return --m>=0 && m<12 && d>0 && d<29+(
4*(y=y&3||!(y%25)&&y&15?0:1)+15662003>>m*2&3
) && m*31-(m>1?(1054267675>>m*3-6&7)-y:0)+d;
}
<!-- some examples for the snippet -->
<input type=text value="(-)Y-M-D" onblur="
var d=this.value.match(/(-?\d+)[^\d]+(\d\d?)[^\d]+(\d\d?)/)||[];
this.nextSibling.innerHTML=' Day: ' + dayNo(+d[1], +d[2], +d[3]);
" /><span></span>
Again, one line, but I split it into 3 lines for readability (and following explanation).
The last line is identical to the function above, however the (identical) leapYear algorithm is moved to a previous short-circuit section (before the day-number calculation), because it is also needed to know how much days a month has in a given (leap) year.
The middle line calculates the correct offset number (for max number of days) for a given month in a given (leap)year using another magic number: since 31-28=3
and 3
is just 2 bits, then 12*2=24
bits, we can store all 12 months. Since addition can be faster then subtraction, we add the offset (instead of subtract it from 31
). To avoid a leap-year decision-branch for February, we modify that magic lookup-number on the fly.
That leaves us with the (pretty obvious) first line: it checks that month and date are within valid bounds and ensures us with a false
return value on range error (note that this function also should not be able to return 0, because 1 jan 0000 is still day 1.), providing easy error-checking: if(r=dayNo(/*y, m, d*/)){}
.
If used this way (where month and day may not be 0
), then one can change --m>=0 && m<12
to m>0 && --m<12
(saving another char).
The reason I typed the snippet in it's current form is that for 0-based month values, one just needs to remove the --
from --m
.
Extra:
Note, don't use this day's per month algorithm if you need just max day's per month. In that case there is a more efficient algorithm (because we only need leepYear when the month is February) I posted as answer this question: What is the best way to determine the number of days in a month with javascript?.
Math.floor((Date.now() - Date.parse(new Date().getFullYear(), 0, 0)) / 86400000)
this is my solution
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With