The following code is throwing an Exception Caused by: java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined. This is happening when a on a dataframe that has been returned after a groupByKey and flatMap invocation on a dataframe using ExpressionEncoder, groupedByKey and a flatMap is invoked.
Logical flow: originalDf->groupByKey->flatMap->groupByKey->flatMap->show
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{ IntegerType, StructField, StructType}
import scala.collection.mutable.ListBuffer
object Test {
def main(args: Array[String]): Unit = {
val values = List(List("1", "One") ,List("1", "Two") ,List("2", "Three"),List("2","4")).map(x =>(x(0), x(1)))
val session = SparkSession.builder.config("spark.master", "local").getOrCreate
import session.implicits._
val dataFrame = values.toDF
dataFrame.show()
dataFrame.printSchema()
val newSchema = StructType(dataFrame.schema.fields
++ Array(
StructField("Count", IntegerType, false)
)
)
val expr = RowEncoder.apply(newSchema)
val tranform = dataFrame.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1
}
for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr)
tranform.show
val newSchema1 = StructType(tranform.schema.fields
++ Array(
StructField("Count1", IntegerType, false)
)
)
val expr1 = RowEncoder.apply(newSchema1)
val tranform2 = tranform.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1
}
for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr1)
tranform2.show
}
}
Following is the stacktrace
18/11/21 19:39:03 WARN TaskSetManager: Lost task 144.0 in stage 11.0 (TID 400, localhost, executor driver): java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined.
at org.apache.spark.sql.Row$class.fieldIndex(Row.scala:342)
at org.apache.spark.sql.catalyst.expressions.GenericRow.fieldIndex(rows.scala:166)
at org.apache.spark.sql.Row$class.getAs(Row.scala:333)
at org.apache.spark.sql.catalyst.expressions.GenericRow.getAs(rows.scala:166)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:300)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:298)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
How to fix this code?
What is java.lang.UnsupportedOperationException? java.lang.UnsupportedOperationException is thrown to denote that the requested operation is not supported by the underlying collection object. The List object returned by the asList method of the Arrays class is unmodifiable.
The UnsupportedOperationException indicates that the requested operation cannot be performed, due to the fact that it is forbidden for that particular class. The following methods create unmodifiable views of different collections: Returns an unmodifiable view of the specified Collection.
This exception extends the RuntimeException class and thus, belongs to those exceptions that can be thrown during the operation of the Java Virtual Machine (JVM). It is an unchecked exception and thus, it does not need to be declared in a method’s or a constructor’s throws clause.
The remove method of an Iterator class may throw UnsupportedOperationException if the iterator is obtained from an unmodifiable List object (like given in the above example) and the method is called while iterating over the list. 1 2 3
The reported problem could be avoided by replacing the fieldname
version of getAs[T] method (used in the function for groupByKey
):
groupByKey(row => row.getAs[String]("_1"))
with the field-position
version:
groupByKey(row => row.getAs[String](fieldIndexMap("_1")))
where fieldIndexMap
maps field names to their corresponding field indexes:
val fieldIndexMap = tranform.schema.fieldNames.zipWithIndex.toMap
As a side note, your function for flatMapGroups can be simplified into something like below:
val tranform2 = tranform.groupByKey(_.getAs[String](fieldIndexMap("_1"))).
flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
inputSeq.map(r => Row.fromSeq(r.toSeq :+ length))
})(expr1)
The inconsistent behavior between applying the original groupByKey/flatMapGroups
methods to "dataFrame" versus "tranform" is apparently related to how the methods handle a DataFrame
versus a Dataset[Row]
.
Solution as received from JIRA on Spark project: https://issues.apache.org/jira/browse/SPARK-26436
This issue is caused by how you create the row:
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
Row.fromSeq creates a GenericRow and GenericRow's fieldIndex is not implemented because GenericRow doesn't have schema.
Changing the line to create GenericRowWithSchema can solve it:
listBuff += new GenericRowWithSchema((x.toSeq ++ Array[Int](counter)).toArray, newSchema)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With