When i executor spark streaming application on yarn, i continued to receive the following error
Why the error happened and how to solve it ? Any suggestion will help, thank you~
15/05/07 11:11:50 INFO dstream.StateDStream: Marking RDD 2364 for time 1430968310000 ms for checkpointing
15/05/07 11:11:50 INFO scheduler.JobScheduler: Added jobs for time 1430968310000 ms
15/05/07 11:11:50 INFO scheduler.JobGenerator: Checkpointing graph for time 1430968310000 ms
15/05/07 11:11:50 INFO streaming.DStreamGraph: Updating checkpoint data for time 1430968310000 ms
15/05/07 11:11:50 INFO streaming.DStreamGraph: Updated checkpoint data for time 1430968310000 ms
15/05/07 11:11:50 ERROR actor.OneForOneStrategy: org.apache.spark.streaming.StreamingContext
java.io.NotSerializableException: org.apache.spark.streaming.StreamingContext
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1184)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
The spark streaming application code as follow, i execute it in spark-shell
import kafka.cluster.Cluster
import kafka.serializer.StringDecoder
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Duration, StreamingContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.StreamingContext._
val updateFunc = (values: Seq[Int], state: Option[Int]) => {
Some(0)
}
val ssc = new StreamingContext(sc,
new Duration(5000))
ssc.checkpoint(".")
val lines = KafkaUtils.createStream(ssc, "10.1.10.21:2181", "kafka_spark_streaming", Map("hello_test" -> 3))
val uuidDstream = lines.transform(rdd => rdd.map(_._2)).map(x => (x, 1)).updateStateByKey[Int](updateFunc)
uuidDstream.count().print()
ssc.start()
ssc.awaitTermination()
The reference to val updateFunc
used within the closure of updateStateByKey
is pulling the rest of that instance into the closure and taking the StreamingContext with it.
Two options:
@transient val ssc= ...
Also a good idea to annotate the dstream declarations as @transient
as well.Like this:
case object TransformFunctions {
val updateFunc = ???
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With