I have given number and want it to return as a String in expanded form. For example
expandedForm(12); # Should return "10 + 2"
expandedForm(42); # Should return "40 + 2"
expandedForm(70304); # Should return "70000 + 300 + 4"
My function works for first and second case, but with 70304 it gives this:
70 + 00 + 300 + 000 + 4
Here's my code
import java.util.Arrays;
public static String expandedForm(int num)
{
String[] str = Integer.toString(num).split("");
String result = "";
for(int i = 0; i < str.length-1; i++) {
if(Integer.valueOf(str[i]) > 0) {
for(int j = i; j < str.length-1; j++) {
str[j] += '0';
}
}
}
result = Arrays.toString(str);
result = result.substring(1, result.length()-1).replace(",", " +");
System.out.println(result);
return result;
}
I think there's a problem with the second loop, but can't figure out why.
Go through the below steps to write the numbers in expanded form: Step 1: Get the standard form of the number. Step 2: Identify the place value of the given number using the place value chart. Step 3: Multiply the given digit by its place value and represent the number in the form of (digit × place value).
You should be adding '0's to str[i]
, not str[j]
:
for(int i = 0; i < str.length-1; i++) {
if(Integer.valueOf(str[i]) > 0) {
for(int j = i; j < str.length-1; j++) {
str[i] += '0';
}
}
}
This will result in:
70000 + 0 + 300 + 0 + 4
You still have to get rid of the 0 digits.
One possible way to get rid of them:
result = result.substring(1, result.length()-1).replace(", 0","").replace(",", " +");
Now the output is
70000 + 300 + 4
public class Kata
{
public static String expandedForm(int num)
{
String outs = "";
for (int i = 10; i < num; i *= 10) {
int rem = num % i;
outs = (rem > 0) ? " + " + rem + outs : outs;
num -= rem;
}
outs = num + outs;
return outs;
}
}
Pseudocode uses integer arithmetics to extract decimal digits one-by-one (from the right one):
mul = 1 //will contain power of 10
while (num > 0):
dig = num % 10 //integer modulo retrieves the last digit
if (dig > 0): //filter out zero summands
add (dig * mul) to output //like 3 * 100 = 300
num = num / 10 //integer division removes the last decimal digit 6519 => 651
mul = mul * 10 //updates power of 10 for the next digit
You could do the same with pure math, using modulo %
and integer division /
, e.g. using Stream
API:
int n = 70304;
String res = IntStream
.iterate(1, k -> n / k > 0, k -> k * 10) // divisors
.map(k -> (n % (k*10) / k ) * k) // get 1s, 10s, 100s, etc.
.filter(x -> x > 0) // throw out zeros
.mapToObj(Integer::toString) // convert to string
.collect(Collectors.joining(" + ")); // join with '+'
System.out.println(res); // 4 + 300 + 70000
There are many variations possible. If the usage of a list is allowed:
public static String expandedForm(int num){
String[] str = Integer.toString(num).split("");
String result;
List<String> l = new ArrayList<String>();
for(int i = 0; i < str.length; i++){
if(Integer.valueOf(str[i]) > 0){
String s = str[i];
for(int j = i; j < str.length - 1; j++){
s += '0';
}
l.add(s);
}
}
result = l.toString();
result = result.substring(1, result.length() - 1).replace(",", " +");
System.out.println(result);
return result;
}
One could also work directly on result:
public static String expandedForm2(int num){
String[] str = Integer.toString(num).split("");
String result = "";
for(int i = 0; i < str.length; i++){
if(Integer.valueOf(str[i]) > 0){
result += str[i];
for(int j = i; j < str.length - 1; j++){
result += '0';
}
result += " + ";
}
}
result = result.substring(0, result.length() - 3);
System.out.println(result);
return result;
}
This is also possible to do recursively. Here an example implementation:
String g(int n, int depth){ // Recursive method with 2 int parameters & String return-type
int remainder = n % depth; // The current recursive remainder
if(depth < n){ // If we aren't done with the number yet:
int nextDepth = depth * 10; // Go to the next depth (of the power of 10)
int nextN = n - remainder; // Remove the remainder from the input `n`
// Do a recursive call with these next `n` and `depth`
String resultRecursiveCall = g(nextN, nextDepth);
if(remainder != 0){ // If the remainder was not 0:
// Append a " + " and this remainder to the result
resultRecursiveCall += " + " + remainder;
}
return resultRecursiveCall; // And return the result
} else{ // Else:
return Integer.toString(n); // Simply return input `n` as result
}
}
String f(int n){ // Second method so we can accept just integer `n`
return g(n, 1); // Which will call the recursive call with parameters `n` and 1
}
The second method is so we can call the method with just a single input n
. For example:
String result = f(70304);
Which will result in the String 70000 + 300 + 4
.
Try it online.
To explain a bit more in depth of what this recursive method does, let's just do a step-by-step for the input 70304
:
n=70304
, depth=1
, remainder=70304%1 = 0
.
depth < n
is truthy, it will do a recursive call with 70304-0
and 1*10
remainder
is 0, it will append nothing more to the resultn=70304
, depth=10
, remainder=70304%10 = 4
.
depth < n
is still truthy, it will do a recursive call with 70304-4
and 10*10
remainder
is 4, it will append a " + "
and this 4
to the resultn=70300
, depth=100
, remainder=70300%100 = 0
.
depth < n
is still truthy, it will do a recursive call with 70300-0
and 100*10
remainder
is 0, it will append nothing more to the resultn=70300
, depth=1000
, remainder=70300%1000 = 300
.
depth < n
is still truthy, it will do a recursive call with 70300-300
and 1000*10
remainder
is 300, it will append a " + "
and this 300
to the resultn=70000
, depth=10000
, remainder=70000%10000 = 0
.
depth < n
is still truthy, it will do a recursive call with 70000-0
and 10000*10
remainder
is 0, it will append nothing more to the resultn=70000
, depth=100000
, remainder=70000%100000 = 70000
.
depth < n
is falsey, it won't do any more recursive calls, but instead return the current n
(which is 70000
).And since these were all recursive calls, we should actually look at it backwards for the result, so it will result in 70000 + 300 + 4
.
So in general:
depth < n
if-check is to see when we are done with the recursive calls.g(n-remainder, depth*10)
will remove the digits we've already output in a previous recursive iteration, and goes to the next 10k
power in the next recursive iterationremainder != 0
if-check determines if the number we want to append was not a 0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With