In order to practise the Java 8 streams I tried converting the following nested loop to the Java 8 stream API. It calculates the largest digit sum of a^b (a,b < 100) and takes ~0.135s on my Core i5 760.
public static int digitSum(BigInteger x)
{
int sum = 0;
for(char c: x.toString().toCharArray()) {sum+=Integer.valueOf(c+"");}
return sum;
}
@Test public void solve()
{
int max = 0;
for(int i=1;i<100;i++)
for(int j=1;j<100;j++)
max = Math.max(max,digitSum(BigInteger.valueOf(i).pow(j)));
System.out.println(max);
}
My solution, which I expected to be faster because of the paralellism actually took 0.25s (0.19s without the parallel()
):
int max = IntStream.range(1,100).parallel()
.map(i -> IntStream.range(1, 100)
.map(j->digitSum(BigInteger.valueOf(i).pow(j)))
.max().getAsInt()).max().getAsInt();
My questions
I know that microbenchmarks are fragile and parallelism is only worth it for big problems but for a CPU, even 0.1s is an eternity, right?
Update
I measure with the Junit 4 framework in Eclipse Kepler (it shows the time taken for executing a test).
My results for a,b<1000 instead of 100:
Update 2
Replacing sum+=Integer.valueOf(c+"");
with sum+= c - '0';
(thanks Peter!) shaved off 10 whole seconds of the parallel method, bringing it to 45s. Didn't expect such a big performance impact!
Also, reducing the parallelism to the number of CPU cores (4 in my case) didn't do much as it reduced the time only to 44.8s (yes, it adds a and b=0 but I think this won't impact the performance much):
int max = IntStream.range(0, 3).parallel().
.map(m -> IntStream.range(0,250)
.map(i -> IntStream.range(1, 1000)
.map(j->.digitSum(BigInteger.valueOf(250*m+i).pow(j)))
.max().getAsInt()).max().getAsInt()).max().getAsInt();
I have created a quick and dirty micro benchmark based on your code. The results are:
loop: 3192
lambda: 3140
lambda parallel: 868
So the loop and lambda are equivalent and the parallel stream significantly improves the performance. I suspect your results are unreliable due to your benchmarking methodology.
public static void main(String[] args) {
int sum = 0;
//warmup
for (int i = 0; i < 100; i++) {
solve();
solveLambda();
solveLambdaParallel();
}
{
long start = System.nanoTime();
for (int i = 0; i < 100; i++) {
sum += solve();
}
long end = System.nanoTime();
System.out.println("loop: " + (end - start) / 1_000_000);
}
{
long start = System.nanoTime();
for (int i = 0; i < 100; i++) {
sum += solveLambda();
}
long end = System.nanoTime();
System.out.println("lambda: " + (end - start) / 1_000_000);
}
{
long start = System.nanoTime();
for (int i = 0; i < 100; i++) {
sum += solveLambdaParallel();
}
long end = System.nanoTime();
System.out.println("lambda parallel : " + (end - start) / 1_000_000);
}
System.out.println(sum);
}
public static int digitSum(BigInteger x) {
int sum = 0;
for (char c : x.toString().toCharArray()) {
sum += Integer.valueOf(c + "");
}
return sum;
}
public static int solve() {
int max = 0;
for (int i = 1; i < 100; i++) {
for (int j = 1; j < 100; j++) {
max = Math.max(max, digitSum(BigInteger.valueOf(i).pow(j)));
}
}
return max;
}
public static int solveLambda() {
return IntStream.range(1, 100)
.map(i -> IntStream.range(1, 100).map(j -> digitSum(BigInteger.valueOf(i).pow(j))).max().getAsInt())
.max().getAsInt();
}
public static int solveLambdaParallel() {
return IntStream.range(1, 100)
.parallel()
.map(i -> IntStream.range(1, 100).map(j -> digitSum(BigInteger.valueOf(i).pow(j))).max().getAsInt())
.max().getAsInt();
}
I have also run it with jmh which is more reliable than manual tests. The results are consistent with above (micro seconds per call):
Benchmark Mode Mean Units
c.a.p.SO21968918.solve avgt 32367.592 us/op
c.a.p.SO21968918.solveLambda avgt 31423.123 us/op
c.a.p.SO21968918.solveLambdaParallel avgt 8125.600 us/op
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With