I am wondering if I can use some function like dplyr::select, dplyr::mutate or dplyr::transmute to invoke side effect functions? I have walk, but it is not from same family.
tibble::as.tibble(mtcars) %>%
dplyr::transmute(colA = cyl * hp, colB = mpg * wt) %>%
dplyr::mutate(., (function(.data, colA, colB){
print(colA)
print(colB)
# invisible(.data)
return(.data)
})(.data = ., colA, colB))
I would like to use column names as arguments to my function for example.
base::with gives you the access to column-as-variables that you want, and magrittr::%T>% lets you run a line of side effects and still pass the whole data frame down the pipe. Simple example:
library(dplyr)
library(magrittr)
mtcars %>% slice(1:3) %T>%
with({print(mpg)
print(cyl)}) %>%
summarize_all(mean)
# [1] 21.0 21.0 22.8
# [1] 6 6 4
# mpg cyl disp hp drat wt qsec vs am gear carb
# 1 21.6 5.333333 142.6667 104.3333 3.883333 2.605 17.36333 0.3333333 1 4 3
Simplified version of your example:
mtcars %>%
transmute(colA = cyl * hp, colB = mpg * wt) %T>%
with({
print(colA)
print(colB)
}) %>%
head
# [1] 660 660 372 660 1400 630 1960 248 380 738 738 1440 1440 1440 1640 1720 1840 264 208
# [20] 260 388 1200 1200 1960 1400 264 364 452 2112 1050 2680 436
# [1] 55.0200 60.3750 52.8960 68.8010 64.3280 62.6260 51.0510 77.8360 71.8200 66.0480 61.2320
# [12] 66.7480 64.5290 57.4560 54.6000 56.4096 78.5715 71.2800 49.0960 62.2065 52.9975 54.5600
# [23] 52.2120 51.0720 73.8240 52.8255 55.6400 45.9952 50.0860 54.5690 53.5500 59.4920
# colA colB
# 1 660 55.020
# 2 660 60.375
# 3 372 52.896
# 4 660 68.801
# 5 1400 64.328
# 6 630 62.626
Note that with takes only one expr argument, so to do multiple things in one with you will need to use {} to enclose the statements.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With