In the current versions of the IPython notebook and jupyter notebook, it is not necessary to use the %matplotlib inline function. As, whether you call matplotlib. pyplot. show() function or not, the graph output will be displayed in any case.
Use matplotlib
's calls that won't block:
Using draw()
:
from matplotlib.pyplot import plot, draw, show
plot([1,2,3])
draw()
print('continue computation')
# at the end call show to ensure window won't close.
show()
Using interactive mode:
from matplotlib.pyplot import plot, ion, show
ion() # enables interactive mode
plot([1,2,3]) # result shows immediatelly (implicit draw())
print('continue computation')
# at the end call show to ensure window won't close.
show()
Use the keyword 'block' to override the blocking behavior, e.g.
from matplotlib.pyplot import show, plot
plot(1)
show(block=False)
# your code
to continue your code.
It is better to always check with the library you are using if it supports usage in a non-blocking way.
But if you want a more generic solution, or if there is no other way, you can run anything that blocks in a separated process by using the multprocessing
module included in python. Computation will continue:
from multiprocessing import Process
from matplotlib.pyplot import plot, show
def plot_graph(*args):
for data in args:
plot(data)
show()
p = Process(target=plot_graph, args=([1, 2, 3],))
p.start()
print 'yay'
print 'computation continues...'
print 'that rocks.'
print 'Now lets wait for the graph be closed to continue...:'
p.join()
That has the overhead of launching a new process, and is sometimes harder to debug on complex scenarios, so I'd prefer the other solution (using matplotlib
's nonblocking API calls)
Try
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.show(block=False)
# other code
# [...]
# Put
plt.show()
# at the very end of your script to make sure Python doesn't bail out
# before you finished examining.
The show()
documentation says:
In non-interactive mode, display all figures and block until the figures have been closed; in interactive mode it has no effect unless figures were created prior to a change from non-interactive to interactive mode (not recommended). In that case it displays the figures but does not block.
A single experimental keyword argument, block, may be set to True or False to override the blocking behavior described above.
IMPORTANT: Just to make something clear. I assume that the commands are inside a .py
script and the script is called using e.g. python script.py
from the console.
A simple way that works for me is:
Example of script.py
file:
plt.imshow(*something*)
plt.colorbar()
plt.xlabel("true ")
plt.ylabel("predicted ")
plt.title(" the matrix")
# Add block = False
plt.show(block = False)
################################
# OTHER CALCULATIONS AND CODE HERE ! ! !
################################
# the next command is the last line of my script
plt.show()
You may want to read this document in matplotlib
's documentation, titled:
Using matplotlib in a python shell
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With