Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Is there a way in Pandas to use previous row value in dataframe.apply when previous value is also calculated in the apply?

People also ask

What is Loc and ILOC?

loc[] is used to select rows and columns by Names/Labels. iloc[] is used to select rows and columns by Integer Index/Position.

How can we retrieve a row in pandas DataFrame?

In the Pandas DataFrame we can find the specified row value with the using function iloc(). In this function we pass the row number as parameter.


First, create the derived value:

df.loc[0, 'C'] = df.loc[0, 'D']

Then iterate through the remaining rows and fill the calculated values:

for i in range(1, len(df)):
    df.loc[i, 'C'] = df.loc[i-1, 'C'] * df.loc[i, 'A'] + df.loc[i, 'B']


  Index_Date   A   B    C    D
0 2015-01-31  10  10   10   10
1 2015-02-01   2   3   23   22
2 2015-02-02  10  60  290  280

Given a column of numbers:

lst = []
cols = ['A']
for a in range(100, 105):
    lst.append([a])
df = pd.DataFrame(lst, columns=cols, index=range(5))
df

    A
0   100
1   101
2   102
3   103
4   104

You can reference the previous row with shift:

df['Change'] = df.A - df.A.shift(1)
df

    A   Change
0   100 NaN
1   101 1.0
2   102 1.0
3   103 1.0
4   104 1.0

numba

For recursive calculations which are not vectorisable, numba, which uses JIT-compilation and works with lower level objects, often yields large performance improvements. You need only define a regular for loop and use the decorator @njit or (for older versions) @jit(nopython=True):

For a reasonable size dataframe, this gives a ~30x performance improvement versus a regular for loop:

from numba import jit

@jit(nopython=True)
def calculator_nb(a, b, d):
    res = np.empty(d.shape)
    res[0] = d[0]
    for i in range(1, res.shape[0]):
        res[i] = res[i-1] * a[i] + b[i]
    return res

df['C'] = calculator_nb(*df[list('ABD')].values.T)

n = 10**5
df = pd.concat([df]*n, ignore_index=True)

# benchmarking on Python 3.6.0, Pandas 0.19.2, NumPy 1.11.3, Numba 0.30.1
# calculator() is same as calculator_nb() but without @jit decorator
%timeit calculator_nb(*df[list('ABD')].values.T)  # 14.1 ms per loop
%timeit calculator(*df[list('ABD')].values.T)     # 444 ms per loop

Applying the recursive function on numpy arrays will be faster than the current answer.

df = pd.DataFrame(np.repeat(np.arange(2, 6),3).reshape(4,3), columns=['A', 'B', 'D'])
new = [df.D.values[0]]
for i in range(1, len(df.index)):
    new.append(new[i-1]*df.A.values[i]+df.B.values[i])
df['C'] = new

Output

      A  B  D    C
   0  1  1  1    1
   1  2  2  2    4
   2  3  3  3   15
   3  4  4  4   64
   4  5  5  5  325

Although it has been a while since this question was asked, I will post my answer hoping it helps somebody.

Disclaimer: I know this solution is not standard, but I think it works well.

import pandas as pd
import numpy as np

data = np.array([[10, 2, 10, 10],
                 [10, 3, 60, 100],
                 [np.nan] * 4,
                 [10, 22, 280, 250]]).T
idx = pd.date_range('20150131', end='20150203')
df = pd.DataFrame(data=data, columns=list('ABCD'), index=idx)
df
               A    B     C    D
 =================================
 2015-01-31    10   10    NaN  10
 2015-02-01    2    3     NaN  22 
 2015-02-02    10   60    NaN  280
 2015-02-03    10   100   NaN  250

def calculate(mul, add):
    global value
    value = value * mul + add
    return value

value = df.loc['2015-01-31', 'D']
df.loc['2015-01-31', 'C'] = value
df.loc['2015-02-01':, 'C'] = df.loc['2015-02-01':].apply(lambda row: calculate(*row[['A', 'B']]), axis=1)
df
               A    B     C     D
 =================================
 2015-01-31    10   10    10    10
 2015-02-01    2    3     23    22 
 2015-02-02    10   60    290   280
 2015-02-03    10   100   3000  250

So basically we use a apply from pandas and the help of a global variable that keeps track of the previous calculated value.


Time comparison with a for loop:

data = np.random.random(size=(1000, 4))
idx = pd.date_range('20150131', end='20171026')
df = pd.DataFrame(data=data, columns=list('ABCD'), index=idx)
df.C = np.nan

df.loc['2015-01-31', 'C'] = df.loc['2015-01-31', 'D']

%%timeit
for i in df.loc['2015-02-01':].index.date:
    df.loc[i, 'C'] = df.loc[(i - pd.DateOffset(days=1)).date(), 'C'] * df.loc[i, 'A'] + df.loc[i, 'B']

3.2 s ± 114 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

data = np.random.random(size=(1000, 4))
idx = pd.date_range('20150131', end='20171026')
df = pd.DataFrame(data=data, columns=list('ABCD'), index=idx)
df.C = np.nan

def calculate(mul, add):
    global value
    value = value * mul + add
    return value

value = df.loc['2015-01-31', 'D']
df.loc['2015-01-31', 'C'] = value

%%timeit
df.loc['2015-02-01':, 'C'] = df.loc['2015-02-01':].apply(lambda row: calculate(*row[['A', 'B']]), axis=1)

1.82 s ± 64.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

So 0.57 times faster on average.