In matlab there is a special function which is not available in any of the collections for the Python I know (numpy, scipy, mpmath, ...).
Probably there are other places where functions like this one may be found?
UPD For all who think that the question is trivial, please try to compute this function for argument ~30 first.
UPD2 Arbitrary precision is a nice workaround, but if possible I would prefer to avoid it. I need a "standard" machine precision (no more no less) and maximum speed possible.
UPD3 It turns out, mpmath
gives surprisingly inaccurate result. Even where standard python math
works, mpmath
results are worse. Which makes it absolutely worthless.
UPD4 The code to compare different ways to compute erfcx.
import numpy as np
def int_erfcx(x):
"Integral which gives erfcx"
from scipy import integrate
def f(xi):
return np.exp(-x*xi)*np.exp(-0.5*xi*xi)
return 0.79788456080286535595*integrate.quad(f,
0.0,min(2.0,50.0/(1.0+x))+100.0,limit=500)[0]
def my_erfcx(x):
"""M. M. Shepherd and J. G. Laframboise,
MATHEMATICS OF COMPUTATION 36, 249 (1981)
Note that it is reasonable to compute it in long double
(or whatever python has)
"""
ch_coef=[np.float128(0.1177578934567401754080e+01),
np.float128( -0.4590054580646477331e-02),
np.float128( -0.84249133366517915584e-01),
np.float128( 0.59209939998191890498e-01),
np.float128( -0.26658668435305752277e-01),
np.float128( 0.9074997670705265094e-02),
np.float128( -0.2413163540417608191e-02),
np.float128( 0.490775836525808632e-03),
np.float128( -0.69169733025012064e-04),
np.float128( 0.4139027986073010e-05),
np.float128( 0.774038306619849e-06),
np.float128( -0.218864010492344e-06),
np.float128( 0.10764999465671e-07),
np.float128( 0.4521959811218e-08),
np.float128( -0.775440020883e-09),
np.float128( -0.63180883409e-10),
np.float128( 0.28687950109e-10),
np.float128( 0.194558685e-12),
np.float128( -0.965469675e-12),
np.float128( 0.32525481e-13),
np.float128( 0.33478119e-13),
np.float128( -0.1864563e-14),
np.float128( -0.1250795e-14),
np.float128( 0.74182e-16),
np.float128( 0.50681e-16),
np.float128( -0.2237e-17),
np.float128( -0.2187e-17),
np.float128( 0.27e-19),
np.float128( 0.97e-19),
np.float128( 0.3e-20),
np.float128( -0.4e-20)]
K=np.float128(3.75)
y = (x-K) / (x+K)
y2 = np.float128(2.0)*y
(d, dd) = (ch_coef[-1], np.float128(0.0))
for cj in ch_coef[-2:0:-1]:
(d, dd) = (y2 * d - dd + cj, d)
d = y * d - dd + ch_coef[0]
return d/(np.float128(1)+np.float128(2)*x)
def math_erfcx(x):
import scipy.special as spec
return spec.erfc(x) * np.exp(x*x)
def mpmath_erfcx(x):
import mpmath
return mpmath.exp(x**2) * mpmath.erfc(x)
if __name__ == "__main__":
x=np.linspace(1.0,26.0,200)
X=np.linspace(1.0,100.0,200)
intY = np.array([int_erfcx(xx*np.sqrt(2)) for xx in X])
myY = np.array([my_erfcx(xx) for xx in X])
myy = np.array([my_erfcx(xx) for xx in x])
mathy = np.array([math_erfcx(xx) for xx in x])
mpmathy = np.array([mpmath_erfcx(xx) for xx in x])
mpmathY = np.array([mpmath_erfcx(xx) for xx in X])
print ("Integral vs exact: %g"%max(np.abs(intY-myY)/myY))
print ("math vs exact: %g"%max(np.abs(mathy-myy)/myy))
print ("mpmath vs math: %g"%max(np.abs(mpmathy-mathy)/mathy))
print ("mpmath vs integral:%g"%max(np.abs(mpmathY-intY)/intY))
exit()
For me, it gives
Integral vs exact: 6.81236e-16
math vs exact: 7.1137e-16
mpmath vs math: 4.90899e-14
mpmath vs integral:8.85422e-13
Obviously, math
gives best possible precision where it works while mpmath
gives error couple orders of magnitude larger where math
works and even more for larger arguments.
erf() method returns the error function of a number. This method accepts a value between - inf and + inf, and returns a value between - 1 to + 1.
erfc() method returns the complementary error function of a number.
erfc ( x ) = 2 π ∫ x ∞ e − t 2 d t = 1 − erf ( x ) . erfc ( x ) = 1 − erf ( x ) .
Why the sum of the error function and The Complementary Error Function is equal 1? show the equality - Brainly.in.
Here is a simple and fast implementation giving 12-13 digit accuracy globally:
from scipy.special import exp, erfc
def erfcx(x):
if x < 25:
return erfc(x) * exp(x*x)
else:
y = 1. / x
z = y * y
s = y*(1.+z*(-0.5+z*(0.75+z*(-1.875+z*(6.5625-29.53125*z)))))
return s * 0.564189583547756287
The gmpy2 library provides access to the MPFR multiple-precision library. For normal precision, it is almost 5x faster than mpmath.
$ py27 -m timeit -s "import mpmath" -s "def erfcx(x):return mpmath.exp(x**2) * mpmath.erfc(x)" "erfcx(30)"
10000 loops, best of 3: 47.3 usec per loop
$ py27 -m timeit -s "import gmpy2" -s "def erfcx(x):return gmpy2.exp(x**2) * gmpy2.erfc(x)" "erfcx(30)"
100000 loops, best of 3: 10.8 usec per loop
Both libraries return the same result for 30.
>>> import mpmath
>>> import gmpy2
>>> mpmath.exp(30**2) * mpmath.erfc(30)
mpf('0.018795888861416751')
>>> gmpy2.exp(30**2) * gmpy2.erfc(30)
mpfr('0.018795888861416751')
>>>
Disclaimer: I maintain gmpy2. I'm actively working towards a new release but there shouldn't be any issues with the current release for this calculation.
Edit: I was curious about the overhead of making two functions calls instead of just one so I implemented a gmpy2.erfcx() entirely in C but still using MPFR to perform the calculations. The improvement was less than I expected. If you think erfcx() would be useful, I can add it to the next release.
$ py27 -m timeit -s "import gmpy2" "gmpy2.erfcx(30)"
100000 loops, best of 3: 9.45 usec per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With