Given the following List:
val l = List(List(1, 2, 3), List(4, 5), List(6, 7, 8))
If I try to transpose it, Scala will throw the following error:
scala> List.transpose(l)
java.util.NoSuchElementException: head of empty list
at scala.Nil$.head(List.scala:1365)
at scala.Nil$.head(List.scala:1362)
at scala.List$$anonfun$transpose$1.apply(List.scala:417)
at scala.List$$anonfun$transpose$1.apply(List.scala:417)
at scala.List.map(List.scala:812)
at scala.List$.transpose(List.scala:417)
at .<init>(<console>:6)
at .<clinit>(<console>)
at RequestResult...
This is because List.transpose
assumes equal-length lists and so uses the head
method:
def transpose[A](xss: List[List[A]]): List[List[A]] = {
val buf = new ListBuffer[List[A]]
var yss = xss
while (!yss.head.isEmpty) {
buf += (yss map (_.head))
yss = (yss map (_.tail))
}
buf.toList
}
I would like to get the following:
List(List(1, 4, 6), List(2, 5, 7), List(3, 8))
Is writing my own version of transpose
the best way to do this? This is what I came up with:
def myTranspose[A](xss: List[List[A]]): List[List[A]] = {
val buf = new ListBuffer[List[A]]
var yss = xss
while (!yss.head.isEmpty) {
buf += (yss filter (!_.isEmpty) map (_.head))
yss = (yss filter (!_.isEmpty) map (_.tail))
}
buf.toList
}
Update: I was interested in comparing the speed of the different solutions offered here, so I put together the following little benchmark:
import scala.testing.Benchmark
import scala.collection.mutable.ListBuffer
trait Transpose extends Benchmark {
def transpose[Int](xss: List[List[Int]]): List[List[Int]] = Nil
val list: List[List[Int]] = List(List(1,2,3), Nil, List(4,5,99,100), List(6,7,8))
def run = {
val l = transpose(list)
println(l)
l
}
}
object PRTranspose extends Transpose {
override def transpose[Int](xss: List[List[Int]]): List[List[Int]] = {
val buf = new ListBuffer[List[Int]]
var yss = xss
while (!yss.head.isEmpty) {
buf += (yss filter (!_.isEmpty) map (_.head))
yss = (yss filter (!_.isEmpty) map (_.tail))
}
buf.toList
}
}
object ACTranspose extends Transpose {
override def transpose[Int](xss: List[List[Int]]): List[List[Int]] = {
val b = new ListBuffer[List[Int]]
var y = xss filter (!_.isEmpty)
while (!y.isEmpty) {
b += y map (_.head)
y = y map (_.tail) filter (!_.isEmpty)
}
b.toList
}
}
object ETranspose extends Transpose {
override def transpose[Int](xss: List[List[Int]]): List[List[Int]] = xss.filter(!_.isEmpty) match {
case Nil => Nil
case ys: List[List[Int]] => ys.map{ _.head }::transpose(ys.map{ _.tail })
}
}
My commands were:
scala PFTranspose 5 out.log
scala ACTranspose 5 out.log
scala ETranspose 5 out.log
My results were:
PRTranspose$ 10 0 1 1 0
ACTranspose$ 9 2 0 0 0
ETranspose$ 9 3 2 3 1
How about this:
scala> def transpose[A](xs: List[List[A]]): List[List[A]] = xs.filter(_.nonEmpty) match {
| case Nil => Nil
| case ys: List[List[A]] => ys.map{ _.head }::transpose(ys.map{ _.tail })
| }
warning: there were unchecked warnings; re-run with -unchecked for details
transpose: [A](xs: List[List[A]])List[List[A]]
scala> val ls = List(List(1, 2, 3), List(4, 5), List(6, 7, 8))
ls: List[List[Int]] = List(List(1, 2, 3), List(4, 5), List(6, 7, 8))
scala> transpose(ls)
res0: List[List[Int]] = List(List(1, 4, 6), List(2, 5, 7), List(3, 8))
scala> val xs = List(List(1,2,3), List(4,5,99,100), List(6,7,8))
xs: List[List[Int]] = List(List(1, 2, 3), List(4, 5, 99, 100), List(6, 7, 8))
scala> transpose(xs)
res1: List[List[Int]] = List(List(1, 4, 6), List(2, 5, 7), List(3, 99, 8), List(100))
I suspect the reason transpose is not defined on a "non-rectangular" list of lists is because mathematically the transpose operation is well-defined only on "rectangular structures". A desirable property of a transpose operation is that transpose( transpose(x) ) == x. This is not the case in your generalization of the transpose operation on non-rectangular list of lists.
Also, take a look at my post on Transposing arbitrary collection-of-collections in Scala and think about doing it for non-rectangular collections-of-collections. You will end up with mathematically inconsistent definitions, leave alone implementations.
I do agree that idiosyncratic "transpose" operations are often useful, but I also think that they should not be made available in standard libraries because of potential confusion regarding their precise definitions.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With