Is there a Java equivalent of the C / C++ function called frexp? If you aren't familiar, frexp is defined by Wikipedia to "break floating-point number down into mantissa and exponent."
I am looking for an implementation with both speed and accuracy but I would rather have the accuracy if I could only choose one.
This is the code sample from the first reference. It should make the frexp contract a little more clear:
/* frexp example */
#include <stdio.h>
#include <math.h>
int main ()
{
double param, result;
int n;
param = 8.0;
result = frexp (param , &n);
printf ("%lf * 2^%d = %f\n", result, n, param);
return 0;
}
/* Will produce: 0.500000 * 2^4 = 8.000000 */
How's this?
public static class FRexpResult
{
public int exponent = 0;
public double mantissa = 0.;
}
public static FRexpResult frexp(double value)
{
final FRexpResult result = new FRexpResult();
long bits = Double.doubleToLongBits(value);
double realMant = 1.;
// Test for NaN, infinity, and zero.
if (Double.isNaN(value) ||
value + value == value ||
Double.isInfinite(value))
{
result.exponent = 0;
result.mantissa = value;
}
else
{
boolean neg = (bits < 0);
int exponent = (int)((bits >> 52) & 0x7ffL);
long mantissa = bits & 0xfffffffffffffL;
if(exponent == 0)
{
exponent++;
}
else
{
mantissa = mantissa | (1L<<52);
}
// bias the exponent - actually biased by 1023.
// we are treating the mantissa as m.0 instead of 0.m
// so subtract another 52.
exponent -= 1075;
realMant = mantissa;
// normalize
while(realMant > 1.0)
{
mantissa >>= 1;
realMant /= 2.;
exponent++;
}
if(neg)
{
realMant = realMant * -1;
}
result.exponent = exponent;
result.mantissa = realMant;
}
return result;
}
This is "inspired" or actually nearly copied identically from an answer to a similar C# question. It works with the bits and then makes the mantissa a number between 1.0 and 0.0.
This does do what you want.
public class Test {
public class FRex {
public FRexPHolder frexp (double value) {
FRexPHolder ret = new FRexPHolder();
ret.exponent = 0;
ret.mantissa = 0;
if (value == 0.0 || value == -0.0) {
return ret;
}
if (Double.isNaN(value)) {
ret.mantissa = Double.NaN;
ret.exponent = -1;
return ret;
}
if (Double.isInfinite(value)) {
ret.mantissa = value;
ret.exponent = -1;
return ret;
}
ret.mantissa = value;
ret.exponent = 0;
int sign = 1;
if (ret.mantissa < 0f) {
sign--;
ret.mantissa = -(ret.mantissa);
}
while (ret.mantissa < 0.5f) {
ret.mantissa *= 2.0f;
ret.exponent -= 1;
}
while (ret.mantissa >= 1.0f) {
ret.mantissa *= 0.5f;
ret.exponent++;
}
ret.mantissa *= sign;
return ret;
}
}
public class FRexPHolder {
int exponent;
double mantissa;
}
public static void main(String args[]) {
new Test();
}
public Test() {
double value = 8.0;
//double value = 0.0;
//double value = -0.0;
//double value = Double.NaN;
//double value = Double.NEGATIVE_INFINITY;
//double value = Double.POSITIVE_INFINITY;
FRex test = new FRex();
FRexPHolder frexp = test.frexp(value);
System.out.println("Mantissa: " + frexp.mantissa);
System.out.println("Exponent: " + frexp.exponent);
System.out.println("Original value was: " + value);
System.out.println(frexp.mantissa+" * 2^" + frexp.exponent + " = ");
System.out.println(frexp.mantissa*(1<<frexp.exponent));
}
}
See Float.floatToIntBits and Double.doubleToLongBits. You still need a little additional logic to decode IEEE 754 floating points.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With