Is there a side effect in doing this:
C code:
struct foo {
int k;
};
int ret_foo(const struct foo* f){
return f.k;
}
C++ code:
class bar : public foo {
int my_bar() {
return ret_foo( (foo)this );
}
};
There's an extern "C"
around the C++ code and each code is inside its own compilation unit.
Is this portable across compilers?
Declaring a structure pointer is similar to the declaration of a structure variable. To declare a structure pointer struct keyword is used followed by the structure name and pointer name with an asterisk * symbol. Members of a structure can be accessed from pointers using two ways that are.
This is entirely legal. In C++, classes and structs are identical concepts, with the exception that all struct members are public by default. That's the only difference.
A struct cannot inherit from another kind of struct, whereas classes can build on other classes. You can change the type of an object at runtime using typecasting. Structs cannot have inheritance, so have only one type. If you point two variables at the same struct, they have their own independent copy of the data.
No you cannot. C does not support the concept of inheritance.
I certainly not recommend using such weird subclassing. It would be better to change your design to use composition instead of inheritance. Just make one member
foo* m_pfoo;
in the bar class and it will do the same job.
Other thing you can do is to make one more class FooWrapper, containing the structure in itself with the corresponding getter method. Then you can subclass the wrapper. This way the problem with the virtual destructor is gone.
This is entirely legal. In C++, classes and structs are identical concepts, with the exception that all struct members are public by default. That's the only difference. So asking whether you can extend a struct is no different than asking if you can extend a class.
There is one caveat here. There is no guarantee of layout consistency from compiler to compiler. So if you compile your C code with a different compiler than your C++ code, you may run into problems related to member layout (padding especially). This can even occur when using C and C++ compilers from the same vendor.
I have had this happen with gcc and g++. I worked on a project which used several large structs. Unfortunately, g++ packed the structs significantly looser than gcc, which caused significant problems sharing objects between C and C++ code. We eventually had to manually set packing and insert padding to make the C and C++ code treat the structs the same. Note however, that this problem can occur regardless of subclassing. In fact we weren't subclassing the C struct in this case.
“Never derive from concrete classes.” — Sutter
“Make non-leaf classes abstract.” — Meyers
It’s simply wrong to subclass non-interface classes. You should refactor your libraries.
Technically, you can do what you want, so long as you don’t invoke undefined behavior by, e. g., deleting a pointer to the derived class by a pointer to its base class subobject. You don’t even need extern "C"
for the C++ code. Yes, it’s portable. But it’s poor design.
This is perfectly legal, though it might be confusing for other programmers.
You can use inheritance to extend C-structs with methods and constructors.
Sample :
struct POINT { int x, y; }
class CPoint : POINT
{
public:
CPoint( int x_, int y_ ) { x = x_; y = y_; }
const CPoint& operator+=( const POINT& op2 )
{ x += op2.x; y += op2.y; return *this; }
// etc.
};
Extending structs might be "more" evil, but is not something you are forbidden to do.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With