Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Is it possible to get color gradients under curve in matplotlib?

I happened to see a beautiful graph on this page which is shown below:

enter image description here

Is it possible to get such color gradients in matplotlib?

like image 837
Tom Kurushingal Avatar asked Mar 28 '15 19:03

Tom Kurushingal


People also ask

How do you shade under a curve in Python?

To fill the area under the curve, put x and y with ste="pre", using fill_between() method. Plot (x, y1) and (x, y2) lines using plot() method with drawstyle="steps" method. To display the figure, use show() method.

Can we select Colours of the visualization using Matplotlib?

With matplotlibYou can pass plt. scatter a c argument, which allows you to select the colors.


2 Answers

There have been a handful of previous answers to similar questions (e.g. https://stackoverflow.com/a/22081678/325565), but they recommend a sub-optimal approach.

Most of the previous answers recommend plotting a white polygon over a pcolormesh fill. This is less than ideal for two reasons:

  1. The background of the axes can't be transparent, as there's a filled polygon overlying it
  2. pcolormesh is fairly slow to draw and isn't smoothly interpolated.

It's a touch more work, but there's a method that draws much faster and gives a better visual result: Set the clip path of an image plotted with imshow.

As an example:

import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as mcolors from matplotlib.patches import Polygon np.random.seed(1977)  def main():     for _ in range(5):         gradient_fill(*generate_data(100))     plt.show()  def generate_data(num):     x = np.linspace(0, 100, num)     y = np.random.normal(0, 1, num).cumsum()     return x, y  def gradient_fill(x, y, fill_color=None, ax=None, **kwargs):     """     Plot a line with a linear alpha gradient filled beneath it.      Parameters     ----------     x, y : array-like         The data values of the line.     fill_color : a matplotlib color specifier (string, tuple) or None         The color for the fill. If None, the color of the line will be used.     ax : a matplotlib Axes instance         The axes to plot on. If None, the current pyplot axes will be used.     Additional arguments are passed on to matplotlib's ``plot`` function.      Returns     -------     line : a Line2D instance         The line plotted.     im : an AxesImage instance         The transparent gradient clipped to just the area beneath the curve.     """     if ax is None:         ax = plt.gca()      line, = ax.plot(x, y, **kwargs)     if fill_color is None:         fill_color = line.get_color()      zorder = line.get_zorder()     alpha = line.get_alpha()     alpha = 1.0 if alpha is None else alpha      z = np.empty((100, 1, 4), dtype=float)     rgb = mcolors.colorConverter.to_rgb(fill_color)     z[:,:,:3] = rgb     z[:,:,-1] = np.linspace(0, alpha, 100)[:,None]      xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()     im = ax.imshow(z, aspect='auto', extent=[xmin, xmax, ymin, ymax],                    origin='lower', zorder=zorder)      xy = np.column_stack([x, y])     xy = np.vstack([[xmin, ymin], xy, [xmax, ymin], [xmin, ymin]])     clip_path = Polygon(xy, facecolor='none', edgecolor='none', closed=True)     ax.add_patch(clip_path)     im.set_clip_path(clip_path)      ax.autoscale(True)     return line, im  main() 

enter image description here

like image 197
Joe Kington Avatar answered Sep 19 '22 19:09

Joe Kington


Please note Joe Kington deserves the lion's share of the credit here; my sole contribution is zfunc. His method opens to door to many gradient/blur/drop-shadow effects. For example, to make the lines have an evenly blurred underside, you could use PIL to build an alpha layer which is 1 near the line and 0 near the bottom edge.

import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as mcolors import matplotlib.patches as patches from PIL import Image from PIL import ImageDraw from PIL import ImageFilter  np.random.seed(1977) def demo_blur_underside():     for _ in range(5):         # gradient_fill(*generate_data(100), zfunc=None) # original         gradient_fill(*generate_data(100), zfunc=zfunc)     plt.show()  def generate_data(num):     x = np.linspace(0, 100, num)     y = np.random.normal(0, 1, num).cumsum()     return x, y  def zfunc(x, y, fill_color='k', alpha=1.0):     scale = 10     x = (x*scale).astype(int)     y = (y*scale).astype(int)     xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()      w, h = xmax-xmin, ymax-ymin     z = np.empty((h, w, 4), dtype=float)     rgb = mcolors.colorConverter.to_rgb(fill_color)     z[:,:,:3] = rgb      # Build a z-alpha array which is 1 near the line and 0 at the bottom.     img = Image.new('L', (w, h), 0)       draw = ImageDraw.Draw(img)     xy = (np.column_stack([x, y]))     xy -= xmin, ymin     # Draw a blurred line using PIL     draw.line(map(tuple, xy.tolist()), fill=255, width=15)     img = img.filter(ImageFilter.GaussianBlur(radius=100))     # Convert the PIL image to an array     zalpha = np.asarray(img).astype(float)      zalpha *= alpha/zalpha.max()     # make the alphas melt to zero at the bottom     n = zalpha.shape[0] // 4     zalpha[:n] *= np.linspace(0, 1, n)[:, None]     z[:,:,-1] = zalpha     return z  def gradient_fill(x, y, fill_color=None, ax=None, zfunc=None, **kwargs):     if ax is None:         ax = plt.gca()      line, = ax.plot(x, y, **kwargs)     if fill_color is None:         fill_color = line.get_color()      zorder = line.get_zorder()     alpha = line.get_alpha()     alpha = 1.0 if alpha is None else alpha      if zfunc is None:         h, w = 100, 1         z = np.empty((h, w, 4), dtype=float)         rgb = mcolors.colorConverter.to_rgb(fill_color)         z[:,:,:3] = rgb         z[:,:,-1] = np.linspace(0, alpha, h)[:,None]     else:         z = zfunc(x, y, fill_color=fill_color, alpha=alpha)     xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()     im = ax.imshow(z, aspect='auto', extent=[xmin, xmax, ymin, ymax],                    origin='lower', zorder=zorder)      xy = np.column_stack([x, y])     xy = np.vstack([[xmin, ymin], xy, [xmax, ymin], [xmin, ymin]])     clip_path = patches.Polygon(xy, facecolor='none', edgecolor='none', closed=True)     ax.add_patch(clip_path)     im.set_clip_path(clip_path)     ax.autoscale(True)     return line, im  demo_blur_underside() 

yields

enter image description here

like image 29
unutbu Avatar answered Sep 18 '22 19:09

unutbu